Background: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.
Results : Both civilian and military patients were admitted to the hospital, 34 patients (47.2%) in their 20s age group, while only 2 (2.8%) in 60s.
High percentage of penetrating neck injuries in zone , 48 patient (68.6%) and lowest in zone , 6 patients (8.5%).
40 patients (57.1%) presented with tracheal and laryngeal injuries and 12 patients (17.5%) were with pharyngeal injuries, 4 patients (5.7) were with recurrent laryngeal nerve injury and 13 patients (18.5%) presented with vascular injuries.
Radiological examination done for 53 patients (75%) and we found foreign bodies in 30 patients (56.6%), tracheal deviation in 4 patients (7.5%) and emphysema in 19 patients (35.8%).
Tracheostomy done in 51 patients (72.8%) neck, exploration in 20 patients (28.5%) and a 9 patients (12.8%) treated conservatively.
Conclusion: Zonal classification of penetrating neck injuries was helpful in the management. Our study explains demographics and location of the injuries. Young men involved in violence and bombing was at high risk.
Zone with involvement of trachea, larynx and pharynx were most common areas of injuries.
Recommendations
Anatomical zone classification should be used as a guideline in management of penetrating neck injuries. (Trauma lifesaving guideline).Tracheostory should be practiced by every doctor in casualty unit. Team of surgeons and anaesthiologist should be always ready for any intervention with patient present to the casualty unite with a penetrating neck injury. Emergency medicine medical practice must be presents in every casualty unit to deal with insults.
Aim of the study
1.To recognize penetrating injuries of the neck according to the anatomic neck zones.
2.Identify the outcome of their treatment
The compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as m
... Show More5-((2,4-dibromo-6-((cyclohexyl(methyl)amino)methyl)phenyl)diazenyl)quinolin-8-ol azo ligand (L) has been synthesized through the reaction of diazonium salt for 2,4-dibromo-6-((cyclohexyl(methyl)amino)methyl)aniline with 8-hydroxyquinoline. The azo ligand (L) was characterized utilizing spectroscopic techniques, including FTIR, UV-Vis, 1H and 13C NMR, as well as mass spectrometry and micro-elemental analysis (C.H.N). Metal complexes containing Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and analyzed through mass spectrometry, flame atomic absorption, elemental analysis (C.H.N), infrared and UV-Vis spectroscopy, along with measurements of conductivity and magnetic properties. The experimental findings suggested that all met
... Show MoreThe nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreThe ligand 4-(2-aminmo-5-nitro-phenylazo)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one derived from 4-aminoantipyrine and 4-nitroaniline was synthesized. The synthesized ligand was characterized by 1HNMR, FT-IR, UV-Vis spectra and (C.H.N) analysis. Complexes of (YIII and LaIII ) with the ligand were prepared in aqueous ethanol with a 1:2 M:L ratio and at optimum pH. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis spectra,(C.H.N) analysis and conductivity measurement. The stoichiometry of complexes was studied by the mole ratio and job methods. A concentration range (1×10-4 - 3×10-4 M) obeyed Beer's law, the complex solutions show high values of molar absorption. On the basis of physicochemical
... Show MoreThe Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2-) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine b
... Show MoreThis article describes how to predict different types of multiple reflections in pre-track seismic data. The characteristics of multiple reflections can be expressed as a combination of the characteristics of primary reflections. Multiple velocities always come in lower magnitude than the primaries, this is the base for separating them during Normal Move Out correction. The muting procedure is applied in Time-Velocity analysis domain. Semblance plot is used to diagnose multiples availability and judgment for muting dimensions. This processing procedure is used to eliminate internal multiples from real 2D seismic data from southern Iraq in two stages. The first is conventional Normal Move Out correction and velocity auto picking and
... Show MoreCoupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
The formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione
... Show More