Content-based image retrieval has been keenly developed in numerous fields. This provides more active management and retrieval of images than the keyword-based method. So the content based image retrieval becomes one of the liveliest researches in the past few years. In a given set of objects, the retrieval of information suggests solutions to search for those in response to a particular description. The set of objects which can be considered are documents, images, videos, or sounds. This paper proposes a method to retrieve a multi-view face from a large face database according to color and texture attributes. Some of the features used for retrieval are color attributes such as the mean, the variance, and the color image's bitmap. In addition, the energy, and the entropy which based on the gray level values in an image is too considered as the features. In addition to statistical approaches, models of artificial intelligence produce a desirable methodology that enhances performance in information retrieval systems, and the genetic algorithm depicts one of them. The GA is preferred for its power and because it can be used without any specific information of the domain. The experimental results conclude that using GA gives a good performance and it decreases the average search time to (60.15 milliseconds) compared with (722.25milliseconds) for traditional search.
Unmanned aerial vehicles (UAVs) can provide valuable spatial information products for many projects across a wide range of applications. One of the major challenges in this discipline is the quality of positioning accuracy of the resulting mapping products in professional photogrammetric projects. This is especially true when using low-cost UAV systems equipped with GNSS receivers for navigation. In this study, the influence of UAV flight direction and camera orientation on positioning accuracy in an urban area on the west bank of the Euphrates river in Iraq was investigated. Positioning accuracy was tested in this study with different flight directions and camera orientation settings using a UAV autopilot app (Pix4Dcapture software
... Show MoreThe location of the study area is surging hills in Bongomene area, Gorontalo, Indonesia. In this study, a geological survey and sampling were taken, and then an analysis of the content of benthic foraminifera was performed in each sample. The study aims to discover the species of benthic foraminifera fossils and to determine the paleobathymetry to the studied regions. The results of the analysis contained seven fossils species, namely Ammomassilina alveoliniformis, Stelligerum astrononion, Haynesia germanica, Nonion fabum, Praeglobobulimina ovata, Rhabdammina discreata and Saccorhiza ramosa. Based on the content of benthic foraminifera fossils, paleobathymetry is determined as Middle Shelf to Outer
... Show MoreThe denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreCompressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
The penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreWater/oil emulsion is considered as the most refractory mixture to separate because of the interference of the two immiscible liquids, water and oil. This research presents a study of dewatering of water / kerosene emulsion using hydrocyclone. The effects of factors such as: feed flow rate (3, 5, 7, 9, and 11 L/min), inlet water concentration of the emulsion (5%, 7.5%, 10%, 12.5%, and 15% by volume), and split ratio (0.1, 0.3, 0.5, 0.7, and 0.9) on the separation efficiency and pressure drop were studied. Dimensional analysis using Pi theorem was applied for the first time to model the hydrocyclone based on the experimental data. It was shown that the maximum separation efficiency; at split ratio 0.1, was 94.3% at 10% co
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More