Preferred Language
Articles
/
jih-56
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of blends nanocomposites are significantly lower compared to that of the(UPR and 3% TiO2), semi-interpenetrating UPR/Epoxy blends (semi-IPNs) for one type of new epoxy [P2]was prepared and noticed the blend nanocomposites show higher dielectric breakdown strength than the semi- IPNs (UPR/Epoxy) at low loading of new epoxies  but the thermal conductivity is a higher than the semi- IPNs UPR/Epoxy at all loading. Thermogravimetric analysis (TGA) was employed to study the thermal properties of the blended nanocomposites.   

View Publication
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Global Pharma Technology
Spectrophotometric determination of loratadine in syrup and study viscosity conductivity and thermodynamic of binary mixed systems of surfactants with loratadine"
...Show More Authors

Scopus
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
The effect of volume fraction on the fatigue strength of unsaturated polyester / glass fiber composite
...Show More Authors

 In this work polymeric composites were done from unsaturated polyester as a matrix reinforced with glass fiber type (E-glass) with two different volume fraction 20% & 40%. Fatigue tests showed that the number of fatigue cycles to failure limit for samples reinforced with uniform (woven Roving 0-90°) E-glass fiber and random (continuous fibers) with volume fraction 40% more than that for the same samples with volume fraction 20%. Also the fatigue results showed that the uniform samples failed with fatigue cycles more than that of random.

View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
The study of thermal description for non-thermal plasma needle system
...Show More Authors

Cold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Study Tensile Strength and Wear Rate for Unsaturated Polyester Resin and Nitrile butadiene Rubber Polymer Blend
...Show More Authors

Abstract

    Binary polymer blend was prepared by mechanical mixing method of unsaturated polyester resin with Nitrile Butadiene Rubber (NBR) with different weight ratios (0, 5, 10 and 15) % of (NBR). Tensile characteristics and wear rates of these blends were studied for all mixing ratios. The microstructure of fracture surfaces of the prepared samples were investigated by optical microscope. The results were showed that strain rates of the resin material increase after blending it with rubber while the ultimate tensile strength and Young’s modulus values of it will decrease. It is also noticed that the wear rate of resin decreases with increasing of (NBR) content.

Keywords:<

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 24 2024
Journal Name
Polymer-plastics Technology And Materials
Li <sub>2</sub> CO <sub>3</sub> as a Modifier for PVA/PVP/PEG Blend Polymer Electrolytes: Effects on Structural Integrity, Electrical Performance, Thermal Behavior and Optical Properties
...Show More Authors

View Publication
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of water absorption on some mechanical and physical properties of epoxy/polyurethane blend reinforced with nano silica powder
...Show More Authors

The aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.

View Publication
Crossref (2)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Effect of nano and micro SiO2 weight percent on interlaminar fracture toughness of woven roving/ epoxy composites
...Show More Authors

Effect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.

View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Investigation of the Structural, Optical and Electrical Properties of AgInSe2 Thin Films
...Show More Authors

Publication Date
Sat Nov 30 2019
Journal Name
Journal Of Engineering And Applied Sciences
Study the Effect of Heat Treatment and Pressure on Some Electrical Properties of Nano Polycarbonate
...Show More Authors

In the present research, the electrical properties which included the ac-conductivity (σac), loss tangent of dielectric (tan δ) and real dielectric constant (ε’) are studied for nano polycarbonate in different pressures and frequencies as a function of temperature these properties were studied at selective temperature gradients which are (RT-50-100-150-250)°C. The results of the study showed that the values of dielectric constant and dissipation factor increase with increasing pressure and temperature and decreases by increasing frequency. And the results of electrical conductivity showed that it increases with increasing temperature, pressure and frequency.

View Publication Preview PDF
Scopus
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Some electrical properties of PVA:PEG/MnCl2 thin film composites
...Show More Authors

PVA:PEG/MnCl2 composites have been prepared by adding (MnCl2) to the mixture of the poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) with different weight percentages (0, 2, 4, 6, 8 and 10) wt.% by using casting method. The type of charge carriers, concentration (nH) and Hall mobility (μH) have been estimated from Hall measurements and show that the films of all concentration have a negative Hall coefficient. In D.C measurement increase temperature leads to decrease the electrical resistance. The D.C conductivity of the composites increases with the increasing of the concentration of additive particles and temperature. The activation energy decreases for all composites with increasing the concentration of the additive particles.

... Show More
View Publication Preview PDF
Crossref (2)
Crossref