Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreResource estimation is an essential part of reservoir evaluation and development planning which highly affects the decision-making process. The available conventional logs for 30 wells in Nasiriyah oilfield were used in this study to model the petrophysical properties of the reservoir and produce a 3D static geological reservoir model that mimics petrophysical properties distribution to estimate the stock tank oil originally in place (STOOIP) for Mishrif reservoir by volumetric method. Computer processed porosity and water saturation and a structural 2D map were utilized to construct the model which was discretized by 537840 grid blocks. These properties were distributed in 3D Space using sequential Gaussian simulation and the variation in
... Show MoreThe Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreBackground: Occupational exposure to hazardous drugs occurs in all aspects of anticancer drug handling. Proper recommendations and guidelines should be applied to control and reduce exposure. Objective: To assess pharmacists' knowledge and practice regarding the safe handling of anticancer drugs. Methods: A cross-sectional study was conducted at seven major hospitals in Baghdad City, Iraq, from December 2023 to February 2024. A pre-designed questionnaire was given to pharmacists who handled anticancer drugs in chemotherapy units. The questionnaire comprises sociodemographic data, knowledge of the safe handling of cytotoxic drugs and thoughts about exposure and risk, practices for safely handling cytotoxic drugs, and challenges for s
... Show MoreIn this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show MoreIn this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show More