Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly at 4% Nano CaCO3 and 6% NHL content by weight. Dynamic Shear Rheometer (DSR) tests further revealed substantial improvements in rutting resistance, with NHL exhibiting superior high-temperature stability and a notable increase in the rutting factor. Marshall stability tests on asphalt concrete (AC) mixtures showed a 22.3% increase in stability with 6% NHL by weight, surpassing the 20.2% improvement observed with Nano CaCO3 and indicating enhanced load-bearing capacity. The resilient modulus of the mixtures consistently increased with the addition of NHL, suggesting improved durability in rutting. Moisture susceptibility tests revealed that NHL significantly enhances moisture resistance, exceeding the 80% TSR benchmark at just 2% content by weight and reaching an impressive 94.6% at 10% content by weight. In contrast, Nano CaCO3 demonstrated a more gradual improvement, achieving an 88.2% TSR at 10% content. Furthermore, permanent deformation analysis indicated a 68.64% improvement in rutting resistance with 10% NHL content by weight, exceeding Nano CaCO3’s improvement rate. Optimal fatigue resistance was achieved at 4% for Nano CaCO3 and 6% for NHL by weight, with respective CT index improvements of 30% and 35.4%, showing NHL’s consistent benefits across various nanomaterial contents. Overall, the study suggests that both Nano CaCO3 and NHL positively impact asphalt performance, with NHL offering more pronounced benefits across a range of properties. These findings provide valuable insights for pavement engineers and underscore NHL’s potential as an effective additive in asphalt mixture design. Real-world applications and validations are essential for a comprehensive understanding of these nanomaterials in practical pavement engineering scenarios.
Evolution in the modern era Which led to the rapid change in the forms of industrial products For many reasons, So put current research into question the view (What are the design requirements that define the formal change in the Iron clothes)? To reach the aim of In the design cornerstonesUnderlying the formal changethe Iron of the clothes, In the first section shed light on the development stages of systems design lists the historic stages of development and energy operator devices irons and mechanism of action and internal components, while in the second part, which was entitled (The role of technology and the factors influencing the change formality of Iron) touched on the three topics which technology modern industrial and receiver,
... Show Moreprotein oxidation through oxidative stress, which represents the overall status of the protein in the cell/tissue. Due to their increased levels of AOPPs were reported during T2DM. The aim of this study was to assess AOPP level in T2DM subjects with foot ulcer (DFU) and explore its correlation with infection. Type 2 diabetic patients (n=108) and healthy subjects (n=25) were enrolled in this study. The T2DM group was subdivided to diabetic patients without complications (n=25) and eighty-three (83) of them have diabetic foot. They were sub- grouped into two groups according to presence Osteomyelitis and abscess, and in reliance on medical analysis of WBC count and CRP. Group of diabetic without superficial or deep ulcer and no osteomyelitis
... Show More
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreThe present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and
... Show MoreThe current Iraqi standard specifications for roads and bridges allowed the prepared Job-Mix Formula for asphalt mixtures to witness some tolerances with regard to the following: coarse aggregate gradation by ± 6.0 %, fine aggregate gradation by ± 4.0 %, filler gradation by ± 2.0 %, asphalt cement content by ± 0.3 % and mixing temperature by ± 15 oC. The objective of this work is to evaluate the behavior of asphalt mixtures prepared by different aggregates gradations (12.5 mm nominal maximum size) that fabricated by several asphalt contents (40-50 grade) and various mixing temperature. All the tolerances specified in the specifications are taken into account, furthermore, the zones beyond these tolerances
... Show MoreNumerical study of separation control on symmetrical airfoil, four digits (NACA
0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range
... Show MoreThis study reports testing results of the transient response of T-shape concrete deep beams with large openings due to impact loading. Seven concrete deep beams with openings including two ordinary reinforced, four partially prestressed, and one solid ordinary reinforced as a reference beam were fabricated and tested. The effects of prestressing strand position and the intensity of the impact force were investigated. Two values for the opening’s depth relative to the beam cross-section dimensions were inspected under the effect of an impacting mass repeatedly dropped from different heights. The study revealed that the beam’s transient deflection was increased by about 50% with gre
In the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show More