Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly at 4% Nano CaCO3 and 6% NHL content by weight. Dynamic Shear Rheometer (DSR) tests further revealed substantial improvements in rutting resistance, with NHL exhibiting superior high-temperature stability and a notable increase in the rutting factor. Marshall stability tests on asphalt concrete (AC) mixtures showed a 22.3% increase in stability with 6% NHL by weight, surpassing the 20.2% improvement observed with Nano CaCO3 and indicating enhanced load-bearing capacity. The resilient modulus of the mixtures consistently increased with the addition of NHL, suggesting improved durability in rutting. Moisture susceptibility tests revealed that NHL significantly enhances moisture resistance, exceeding the 80% TSR benchmark at just 2% content by weight and reaching an impressive 94.6% at 10% content by weight. In contrast, Nano CaCO3 demonstrated a more gradual improvement, achieving an 88.2% TSR at 10% content. Furthermore, permanent deformation analysis indicated a 68.64% improvement in rutting resistance with 10% NHL content by weight, exceeding Nano CaCO3’s improvement rate. Optimal fatigue resistance was achieved at 4% for Nano CaCO3 and 6% for NHL by weight, with respective CT index improvements of 30% and 35.4%, showing NHL’s consistent benefits across various nanomaterial contents. Overall, the study suggests that both Nano CaCO3 and NHL positively impact asphalt performance, with NHL offering more pronounced benefits across a range of properties. These findings provide valuable insights for pavement engineers and underscore NHL’s potential as an effective additive in asphalt mixture design. Real-world applications and validations are essential for a comprehensive understanding of these nanomaterials in practical pavement engineering scenarios.
Background: The aim of this study was to evaluate the effect of thermo cycling and different pH of artificial saliva (neutral, acidic, basic) on impact and transverse strength of heat cure acrylic resin reinforced of with 5% silanated ZrO2 nano fillers. Materials and methods: 120 samples were prepared, 60 samples for impact strength test and another 60 samples for transverse strength test, for each test, samples were divided into two major groups (before and after thermo cycling), then each of these major groups were further subdivided into 3 subgroups according to the pH of prepared artificial saliva (neutral, acidic, basic). Charpy impact device was used for impact strength test and Flexural device was used for transverse strength test. R
... Show MoreThe durability of asphalt pavement is associated with the properties and performance of the binder. This work-study intended to understand the impact of blending Styrene-Butadiene-Styrene (SBS) to conventional asphalt concrete mixtures and calculating the Optimum Asphalt Content (OAC) for conventional mixture also; compare the performance between SBS modified with the conventional mixture. Two different kinds of asphalt penetration grades, A.C. (40-50) and A.C. (60-70), were improved with 2.5 and 3.5% SBS polymer, respectively. Marshall properties were determined in this work. Optimum Asphalt Content (OAC) was 4.93 and 5.1% by weight of mixture for A.C. (40-50) and (60-70), respectively. Marshall properties results show an increasem
... Show MoreThis work deals with preparation of Sulfated Zirconia catalyst (SZ) for isomerization of n-hexane model and refinery light naphtha, as well as enhanced the role of promoters to get the target with the mild condition, stability, and to prevent formation of coke precursors on strong acidic sites of the catalyst. The prepared SZ catalysts were characterization by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer –Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) Analyzer. The results illustrate that the maximum conversion and selectivity for n-hexane isomerization with Ni-WSZ and operating temperature of 150 °C
... Show MoreNano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show MoreBackground: Even the wide use of dental implants, still there is a proportion of implants are failed due to infection. Much considerable attention has been paid to modify the implant surface. Coating of dental implant with a biocomposite material of suitable properties can improve osseointegration. And this is the main concern of this study. The aim of present study was to evaluate the use of a biocomposite coating of dental implant with (ceramic nano Al2O3 and metalic AgNo3) on the bond strength at bone – implant interface and tissue reaction. Materials and methods: A total number of forty-eight screws, CpTi dental implant used in this study. Half of these screws were coated with a biocomposite material of nano (Al2O3and AgNo3), thi
... Show MoreThe rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreFibromyalgia (FM) is a common, debilitating, and chronic pain syndrome. The women are more likely to have more tender points on examination than are their male counterparts. Iraqi study showed that FM occur in 1.5% among adolescents of Iraqi population. In compare to normal healthy women, present study was revealed that Iraqi women with FM have significant elevation of calcium (p = 0.003) with significant reduction of magnesium (p = 0.001), whereas the inorganic phosphorous was not differs (p = 0.31). In conclusion, magnesium and calcium would play a crucial role in etiopathogenesis of fibromyalgia.
Key words: calcium, magnesium, phosphorous, Fibromyalgia.