Preferred Language
Articles
/
jhb6j4oBVTCNdQwCe58a
A Robust Multi-Channel EEG Signals Preprocessing Method for Enhanced Upper Extremity Motor Imagery Decoding
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Some Robust methods for Estimates the power Spectrum in ARMA Models Simulation Study
...Show More Authors

Abstract:

Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .

power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.

<

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (40)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Thu Aug 29 2024
Journal Name
International Journal Of Sustainable Development And Planning
Exploring the Transformative Effects of GPS and Satellite Imagery on Urban Landscape Perceptions in Baghdad: A Mixed-Methods Analysis
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Enhanced Chain-Cluster Based Mixed Routing Algorithm for Wireless Sensor Networks
...Show More Authors

Energy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 22 2016
Journal Name
Offshore Technology Conference Asia
Nanofluids for Enhanced Oil Recovery Processes: Wettability Alteration Using Zirconium Oxide
...Show More Authors

Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0

... Show More
Scopus (49)
Crossref (36)
Scopus Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Generation of True Random TTL Signals for Quantum Key-Distribution Systems Based on True Random Binary Sequences
...Show More Authors

A true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems

View Publication Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees
...Show More Authors

View Publication
Scopus (290)
Crossref (256)
Scopus Clarivate Crossref
Publication Date
Thu Jun 15 2023
Journal Name
International Journal On Engineering, Science And Technology
EEG Neuro-markers to Enhance BCI-based Stroke Patients Rehabilitation
...Show More Authors

Stroke is the second largest cause of death worldwide and one of the most common causes of disability. However, several approaches have been proposed to deal with stroke patient rehabilitation like robotic devices and virtual reality systems, researchers have found that the brain-computer interfaces (BCI) approaches can provide better results. In this study, the electroencephalography (EEG) dataset from post-stroke patients were investigated to identify the effects of the motor imagery (MI)-based BCI therapy by investigating sensorimotor areas using frequency and time-domain features and to select particular methods that help in enhancing the MI-based BCI systems for stroke patients using EEG signal processing. Therefore, to detect

... Show More
View Publication
Crossref