In this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we get different clusters ,each cluster contain 12 observation that represent a mean wind speed for each station . The comparison among the best models are held by using statistical standard the mean square Error(MSE),our conclusion for the parametric model during the application the with additional random effect(the second model) is better than the model without addithonal random effect(the first model)for all station in general,for nonparametric model we found the conditional local mixed model is better than marginal mixed model in estimation the conditional and marginal means for mixed model in general, for marginal mean , where found that the marginal local mixed model is better for all the stations that we were sampled except for the fifth station we found that the conditional local mixed model is better for the marginal local mixed model in estimation of marginal mean mixed model .
In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on the basis of the method of the Cen
... Show MoreAssessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviat
... Show Moreاسهم تطور ادوات الاسواق المالية والتغيرات العالمية كالعولمة المالية وتحرير الاسواق المالية العالمية في احداث العديد من الازمات ومنها الازمة المالية الدولية التي تعد من اكثر الظواهر ملازمة للاسواق المالية على الرغم من التطورات التي تشهدها تلك الاسواق نتيجة تطور ادواتها المالية وانفتاحها على بعضها البعض. وتتعرض الاسواق المالية الدولية والناشئة (Emerging Market) منها بشكل خاص ا
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreLinear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan
... Show MoreLongitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreThis study investigates asset returns within the Iraq Stock Exchange by employing both the Fama-MacBeth regression model and the Fama-French three-factor model. The research involves the estimation of cross-sectional regressions wherein model parameters are subject to temporal variation, and the independent variables function as proxies. The dataset comprises information from the first quarter of 2010 to the first quarter of 2024, encompassing 22 publicly listed companies across six industrial sectors. The study explores methodological advancements through the application of the Single Index Model (SIM) and Kernel Weighted Regression (KWR) in both time series and cross-sectional analyses. The SIM outperformed the K
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.