Preferred Language
Articles
/
jeasiq-568
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Slice inverse regression with the principal components in reducing high-dimensions data by using simulation
...Show More Authors

This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions,    (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Joiv : International Journal On Informatics Visualization
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Nonparametric Regression Function Using Canonical Kernel
...Show More Authors

    This research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel  and give the sound amount of smoothing .

We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Estimation Methods for Mixed-Random Panel Data Regression Models with Serially Correlated Errors with Application
...Show More Authors

This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
جدلية التنظرية في الذاكرة المنظمة بين متاهة النماذج الصناعية وواقعيةالنموذج الهجين
...Show More Authors

جدلية التنظرية في الذاكرة المنظمة بين متاهة النماذج الصناعية وواقعيةالنموذج الهجين

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution
...Show More Authors

 

     We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 11 2025
Journal Name
Iraqi Statisticians Journal
Estimating General Linear Regression Model of Big Data by Using Multiple Test Technique
...Show More Authors

View Publication
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Tue Oct 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
AUTOMATIC ARABIC KEYWORD EXTRACTION USING LOGISTIC REGRESSION
...Show More Authors

View Publication
Crossref
Publication Date
Sun Oct 23 2022
Journal Name
Baghdad Science Journal
Comparison Between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans
...Show More Authors

In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number   determines the persistence or extinction of the COVID-19. If   , one infected cell will transmit the virus to less than one cell, as a result,  the person carrying the Coronavirus will get rid of the disease .If   the infected cell  will be able to infect  all  cells that contain ACE receptors. The stochastic model proves that if  are sufficiently large then maybe  give  us ultimate disease extinction although ,  and this  facts also proved by computer simulation.

View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref