In this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has been used simulation procedure for comparison and different sample sizes of size (14,30,60 and 100) using standard comparison Integral Mean Square Error (IMSE). For k-out of-n system, the results indicate that it is better to use Bayesian method for samples of size (30,60 and 100), and to use the classical method for samples of size (14), whereas for series system the best method to use is Bayesian method for samples of size (14,60 and 100) , and to use the classical method for sample of size (30). for parallel system, it is better to use Bayesian method for all sample sizes.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
Estimating multivariate location and scatter with both affine equivariance and positive break down has always been difficult. Awell-known estimator which satisfies both properties is the Minimum volume Ellipsoid Estimator (MVE) Computing the exact (MVE) is often not feasible, so one usually resorts to an approximate Algorithm. In the regression setup, algorithm for positive-break down estimators like Least Median of squares typically recomputed the intercept at each step, to improve the result. This approach is called intercept adjustment. In this paper we show that a similar technique, called location adjustment, Can be applied to the (MVE). For this purpose we use the Minimum Volume Ball (MVB). In order
... Show MoreThe aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
In this paper, the computational complexity will be reduced using a revised version of the selected mapping (SLM) algorithm. Where a partial SLM is achieved to reduce the mathematical operations around 50%. Although the peak to average power ratio (PAPR) reduction gain has been slightly degraded, the dramatic reduction in the computational complexity is an outshining achievement. Matlab simulation is used to evaluate the results, where the PAPR result shows the capability of the proposed method.
The basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreA numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro
The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show More