Preferred Language
Articles
/
jeasiq-3045
The Cluster Analysis by Using Nonparametric Cubic B-Spline Modeling for Longitudinal Data
...Show More Authors

Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroups by penalizing the pairwise distances between the coefficients of the cubic B-spline model using one of the common penalize functions, the Minimax Concave Penalty function (MCP). This method, in turn, works to determine the number of clusters through one of the model selection criteria, Bayesian information criteria (BIC), and we used optimization methods to solve their equations. Therefore, we applied the alternative direction method of the ADMM multiplier algorithm to reach approximate solutions to find the estimators of the nonparametric model using R statistical software.
Longitudinally balanced data were generated in the simulation study, as the number of subjects was 60 and the number of repeats (time) was 10 for each subject. The simulation was iterated 100 times, and it showed that employing the MCP partial methods on the cubic model can group profiles into clusters, which is the aim of this paper.

 

Paper type: Research paper.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
BUILD AN EFFICIENT INVESTMENT PORTFOLIO USING THE WILLIAM RATIO (EMPIRICAL STUDY) IN IRAQ STOCK EXCHANGE: BUILD AN EFFICIENT INVESTMENT PORTFOLIO USING THE WILLIAM RATIO (EMPIRICAL STUDY) IN IRAQ STOCK EXCHANGE
...Show More Authors

ABSTRACT

            This study aimed to choose top stocks through technical analysis tools specially the indicator called (ratio of William index), and test the ability of technical analysis tools in building a portfolio of shares efficient in comparison with the market portfolio. These one technical tools were used for building one portfolios in 21 companies on specific preview conditions and choose 10 companies for the period from (March 2015) to (June 2017). Applied results of the research showed that Portfolio yield for companies selected according to the ratio of William index indicator (0.0406) that

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Removal of Sulfate from Waste Water by Activated Carbon
...Show More Authors

Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.

The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of  sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased  with adsorbent mass increasing. The maximum removal value of sulfate at  different pH experiments is (43%) at pH=7.

View Publication Preview PDF
Publication Date
Thu Mar 29 2018
Journal Name
Construction Research Congress 2018
Validation of Time-Safety Influence Curve Using Empirical Safety and Injury Data—Poisson Regression
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2023
Journal Name
Iraqi Geological Journal
Subsurface Structural Image of Galabat Field, North East of Iraq Using 2D Seismic Data
...Show More Authors

This research had been achieved to identify the image of the subsurface structure representing the Tertiary period in the Galabat Field northeast of Iraq using 2D seismic survey measurements. Synthetic seismograms of the Galabat-3 well were generated in order to identify and pick the reflectors in seismic sections. Structural Images were drawn in the time domain and then converted to the depth domain by using average velocities. Structurally, seismic sections illustrate these reflectors are affected by two reverse faults affected on the Jeribe Formation and the layers below with the increase in the density of the reverse faults in the northern division. The structural maps show Galabat field, which consists of longitudinal Asymmetrical narr

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Medical Journal
Surface analysis of the PEKK coating on the cp ti implant using laser technique
...Show More Authors

Objective: Evaluation of the poly ether keton keton polymer (PEKK) coating material on the commercial pure titanium disks (CP Ti) with or without laser surface structuring. Design: In vitro experimental study of PEKK polymer coated material on the CP Ti disks with or without laser surface structuring. Materials and methods: coating the surface of the commercial pure titanium (CP Ti) disks with PEKK polymer was performed via using frictional mode CO2 laser, then the samples disks analyzed by using FESEM. Results: the FESEM reveal good adherence and distribution of the PEKK coated material over the CP Ti substrate by using the frictional mode CO2 laser at 2 watt and 6 ms pulse duration. Conclusion: the frictional mode CO2 laser considered an

... Show More
Preview PDF
Scopus (7)
Scopus
Publication Date
Wed Feb 16 2022
Journal Name
Journal Of Economics And Administrative Sciences
Solving Resource Allocation Model by Using Dynamic Optimization Technique for Al-Raji Group Companies for Soft Drinks and Juices
...Show More Authors

In this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Effects of Macroeconomic Variables on Gross Domestic Product in Saudi Arabia using ARDL model for the period 1993-2019
...Show More Authors

 

This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .
...Show More Authors

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
View Publication Preview PDF
Crossref