Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variability. In the practical sphere it is however more realistic to capture the most significant parameters of the research design through the best fitted candidate model for this research. Simulation studies demonstrate that the mixed-effects conditional logistic regression is more accurate for pollution studies, with fixed-effects conditional logistic regression models potentially generating flawed conclusions. This is because mixed-effects conditional logistic regression provides detailed insights on clusters that were largely overlooked by fixed-effects conditional logistic regression.
This research is concerned with studying the representations of the event in the drawings of the ancient civilizations of the world, and the research consists of two axes, the axis of the theoretical framework, which included (the research problem, its aim, its limits, and the definition of its terminology).
The research aims to reveal how the event pattern was formulated by the artist on the surface of his visual achievement, and the limits of the search were spatial in the ancient civilizations of Iraq, Egypt, Greece and Rome, but the limits of the temporal research could not be determined because they were before birth, and objectively:
representations of the event in the civilizations of the ancient world This axis also in
The aim of the research is to use the data content analysis technique (DEA) in evaluating the efficiency of the performance of the eight branches of the General Tax Authority, located in Baghdad, represented by Karrada, Karkh parties, Karkh Center, Dora, Bayaa, Kadhimiya, New Baghdad, Rusafa according to the determination of the inputs represented by the number of non-accountable taxpayers and according to the categories professions and commercial business, deduction, transfer of property ownership, real estate and tenders, In addition to determining the outputs according to the checklist that contains nine dimensions to assess the efficiency of the performance of the investigated branches by investing their available resources T
... Show MoreThis study used a continuous photo-Fenton-like method to remediate textile effluent containing azo dyes especially direct blue 15 dye (DB15). A Eucalyptus leaf extract was used to create iron/copper nanoparticles supported on bentonite for use as catalysts (E@B-Fe/Cu-NPs). Two fixed-bed configurations were studied and compared. The first one involved mixing granular bentonite with E@B-Fe/Cu-NPs (GB- E@B-Fe/Cu-NPs), and the other examined the mixing of E@B-Fe/Cu-NPs with glass beads (glass beads-E@B-Fe/Cu-NPs) and filled to the fixed-bed column. Scanning electron microscopy (SEM), zeta potential, and atomic forces spectroscopy (AFM) techniques were used to characterize the obtained particles (NPs). The effect of flow rate and DB15 concent
... Show MoreMeasuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreIn the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cry
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreThe launch of the EU’s Eastern Partnership in 2009 intended to signal a new, elevated level of EU engagement with its Eastern neighborhood. Yet there remain several long-simmering and potentially destabilizing conflicts in the region, with which EU engagement thus far has been sporadic at best. The Union’s use of its Common Security and Defense Policy (CSDP) in the region and to help solve these disputes has been particularly ad hoc and inconsistent, wracked by inter-institutional incoherence and undermined by Member States’ inability to agree on a broad strategic vision for engagement with the area.
The three CSDP missions deployed to the region thus far have all suffered from this incoherence to various extents. In particu
... Show MoreThis research discusses the rehabilitation of heritage markets in the historical centers of Islamic Arab cities and their use in the field of cultural tourism as one of the most important tourist attractions and the subsequent revival of the national economy in addition to preserving the urban heritage as these markets part of the historical centers of cities. The research also discusses the preservation of the continuity of heritage markets as a product of cultural heritage value within an integrated framework to preserve the urban heritage in the historic centers of cities. The study then reviews a number of experiences of Arab and Islamic countries in the field of preserving and rehabilitating heritage markets, which qualify them to b
... Show More