Preferred Language
Articles
/
jeasiq-2607
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared using standard mean squares error via simulated experiments and taking different sample sizes (20, 40, 80, and 160). The model's superiority was shown by achieving the least value of the mean squares error (MSE(, which indicated by the fuzzy bridge regression model.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Apr 01 2025
Journal Name
Journal Of Engineering
Comparative Analysis of The Combined Model (Spatial and Temporal) and Regression Models for Predicting Murder Crime
...Show More Authors

This research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Models Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

The research took the spatial autoregressive model: SAR and spatial error model: SEM  in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Estimating the chemical composition of secondary compounds of Iraqi wild Agaricus bellaniae characterized morphologically and genetically
...Show More Authors

   This study, which is considered the first of its kind in the world and the Arab homeland, was carried out in the laboratory of mushroom production belonging to the Medicinal Plant Unit/ College Of Agricultural Engineering Sciences/ University of  Baghdad during the period from July 21, 2016, to December 30, 2018, aiming to isolate and purify the mycelium of the wild isolation in addition to the genetic and morphological identification of the mushroom Agaricus bellaniae. The obtained pure isolation was tagged in the American National Center for Biotechnology Information (NCBI) with symbol MF987843.1, thus Iraq would be the second country in the world in which the mushroom is grown following the United States of America. The

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Distinguishing Shapes of Breast Cancer Masses in Ultrasound Images by Using Logistic Regression Model
...Show More Authors

The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 20 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Suggested Model to audit the oil companies to achieve environmental control
...Show More Authors

Oil sector is one of the most important sectors affecting the ecological balance, as activity contributes to the oil companies to influence their working environment, both during the oil exploration and extraction process or during transfer from one place to another process. We will try through this research put an environmental audit program proposal takes into account all the financial aspects, commitment and performance, according to the laws and regulations and agreements as well as relevant international standards, was based on research on the premise that the development of an environmental proposal auditing program that includes environmental controls on oil industry phases which helps reduce or minimize environmental pollutants B

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Diyala Journal For Pure Science
Employing difference technique in some Liu estimators to semiparametric regression model
...Show More Authors

Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use

... Show More
View Publication
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Applied Sciences
Multiobjective Optimization of Stereolithography for Dental Bridge Based on a Simple Shape Model Using Taguchi and Response Surface Methods
...Show More Authors

Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimation of a Circular Regression Model on Peak Systolic Blood Pressure Data
...Show More Authors

Purpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement. Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both. Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. Findings: The Mean Circular Erro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Genetic Algorithm to Estimate the Parameters of the Gumbel Distribution Function by Simulation
...Show More Authors

In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as  the Bayes method. The comparison was made using the mean error squares (MSE), where the best  estimator  is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).

View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Slice inverse regression with the principal components in reducing high-dimensions data by using simulation
...Show More Authors

This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions,    (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear

... Show More
View Publication Preview PDF
Crossref