Preferred Language
Articles
/
jeasiq-2352
Robust Estimation OF The Partial Regression Model Using Wavelet Thresholding
...Show More Authors

            Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavelet threshold and the PLM estimation method with the Speakman estimation and Nadarya-Watson smoothing, using simulation experiments at different sample sizes and contaminated ratios.

     The mean square error criterion was employed to compare the two methods. The robust method is more efficient in obtaining robust estimators than the PLM estimation method

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Spectral fluctuations in <sup>24</sup>Mg nucleus using the framework of the nuclear shell model
...Show More Authors
Abstract<p>Random matrix theory is used to study the chaotic properties in nuclear energy spectrum of the <sup>24</sup>Mg nucleus. The excitation energies (which are the main object of this study) are obtained via performing shell model calculations using the OXBASH computer code together with an effective interaction of Wildenthal (W) in the isospin formalism. The <sup>24</sup>Mg nucleus is assumed to have an inert <sup>16</sup>O core with 8 nucleons (4protons and 4neutrons) move in the 1d<sub>5/2</sub>, 2s<sub>1/2</sub> and 1d<sub>3/2</sub> orbitals. The spectral fluctuations are studied by two statistical measures: the nearest neighb</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
The effective of partial replacement of barium by yttrium on HgBa2-xYxCa2Cu3O8+δ superconducting compound
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 03 2025
Journal Name
Internationaljournalof Economicsandfinancestudies
CROSS-SECTIONAL REGRESSION WITH PROXIES: A SEMI-PARAMETRIC METHOD
...Show More Authors

This study investigates asset returns within the Iraq Stock Exchange by employing both the Fama-MacBeth regression model and the Fama-French three-factor model. The research involves the estimation of cross-sectional regressions wherein model parameters are subject to temporal variation, and the independent variables function as proxies. The dataset comprises information from the first quarter of 2010 to the first quarter of 2024, encompassing 22 publicly listed companies across six industrial sectors. The study explores methodological advancements through the application of the Single Index Model (SIM) and Kernel Weighted Regression (KWR) in both time series and cross-sectional analyses. The SIM outperformed the K

... Show More
View Publication
Scopus
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I Article Sidebar
...Show More Authors

n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 22 2022
Journal Name
International Journal Of Early Childhood Special Education
The impact of using learning acceleration model on the achievement of mathematics for third intermediate grade students
...Show More Authors

The current study aims at identifying the impact of using learning acceleration model on the achievement of mathematics for third intermediategrade students. Forachieving this, the researchers chose the School (Al-Kholood Secondary School for Girls) affiliated to the General Directorate of Babylon Education / Hashemite Education Department for the academic year (2021/2021), The sample reached to (70) female students from the third intermediate grade, with (35) female students for each of the two research groups. The two researchers prepared an achievement test consisting of (25) objective items of multiple choice type, The psychometric properties of the test were confirmed, and after the completion of the experiment, the achievement test wa

... Show More
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Study of the matter density distributions of halo nuclei 6He and 16C using the binary cluster model
...Show More Authors

The harmonic oscillator (HO) and Gaussian (GS) wave functions within the binary cluster model (BCM) have been employ to investigate the ground state neutron, proton and matter densities as well as the elastic form factors of two- neutron 6He and 16C halo nuclei. The long tail is a property that is clearly revealed in the density of the neutrons since it is found in halo orbits. The existence of a long tail in the neutron density distributions of 6He and 16C indicating that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section (𝜎𝑅 ) of these nuclei have been calculated using the Glauber model.

View Publication
Publication Date
Tue Oct 19 2021
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Object Tracking Using Adaptive Diffusion Flow Active Model
...Show More Authors

Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref