Preferred Language
Articles
/
jeasiq-2352
Robust Estimation OF The Partial Regression Model Using Wavelet Thresholding
...Show More Authors

            Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavelet threshold and the PLM estimation method with the Speakman estimation and Nadarya-Watson smoothing, using simulation experiments at different sample sizes and contaminated ratios.

     The mean square error criterion was employed to compare the two methods. The robust method is more efficient in obtaining robust estimators than the PLM estimation method

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 26 2025
Journal Name
Journal Of Administration And Economics
Proposal to use the style of the slides in the estimation and forecasting Fertility rates in Iraq for the period 2012-2031
...Show More Authors

It is often needed in demographic research to modern statistical tools are flexible and convenient to keep up with the type of data available in Iraq in terms of the passage of the country far from periods of war and economic sanctions and instability of the security for a period of time . So, This research aims to propose the use of style nonparametric splines as a substitute for some of the compounds of analysis within the model Lee-Carter your appreciation rate for fertility detailed variable response in Iraq than the period (1977 - 2011) , and then predict for the period (2012-2031). This goal was achieved using a style nonparametric decomposition of singular value vehicles using the main deltoid , and then estimate the effect of time-s

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 26 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication
Publication Date
Tue Sep 09 2014
Journal Name
Iosr Journal Of Mathematics (iosr-jm)
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Ridge regression method with some classical methods to estimate the parameters of Lomax distribution by simulation
...Show More Authors

Abstract

In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications  in order  to get mean square error and used it to make compare , simulation experiment  contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Hybrid Transform Based Denoising with Block Thresholding
...Show More Authors

A frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 10 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Development of Robust and Efficient Symmetric Random Keys Model based on the Latin Square Matrix
...Show More Authors

Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Mar 31 2025
Journal Name
Iraqi Statisticians Journal
Hypothesis Testing for Non-Normal Multiple Compact Regression Model
...Show More Authors

Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 01 2012
Journal Name
Ieee Transactions On Geoscience And Remote Sensing
Echo Amplitude Normalization of Full-Waveform Airborne Laser Scanning Data Based on Robust Incidence Angle Estimation
...Show More Authors

View Publication
Scopus (25)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Robust Estimations for power Spectrum in ARMA(1,1) Model Simulation Study
...Show More Authors

Simulation Study

 

Abstract :

Robust statistics Known as, Resistance to mistakes resulting of the deviation of Check hypotheses of statistical properties ( Adjacent Unbiased  , The Efficiency of data taken from a wide range of probability distributions follow a normal distribution or a mixture of other distributions with different standard deviations.

 power spectrum function lead to, President role in the analysis of Stationary random processes, organized according to time, may be discrete random variables or continuous. Measuring  its total capacity as frequency function.

Estimation methods Share with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Arobust Hotelling-T2 test"
...Show More Authors

This research work as an attempt has been made to find robust estimations for Hotelling-T2 test when the data is from amultivariate normal distribution and the sample of the multivariate contain outliers also this research gives an easily high breakdown point robust consistent estimators of multivariate location and dispersion for multivariate analysis by using two types of robust estimators, of these methods are minimum covariance determinant estimator and reweighted minimum covariance determinant estimator.

View Publication Preview PDF
Crossref