Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the Maximum Likelihood method. Monte Carlo simulation was used with different skewness levels and sample sizes, and the superiority of the results was compared. It was concluded that (SND) model estimation using (GA) is the best when the samples sizes are small and medium, while large samples indicate that the (IR) algorithm is the best. The study was also done using real data to find the parameter estimation and a comparison between the superiority of the results based on (AIC, BIC, Mse and Def) criteria.
The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich iso
... Show MoreMO Khudhair, 2020
This research tests the relationship linkage and effect between the Employees Empowerment Strategy and Organizational Innovation, The research problem is how to understand the Employees Empowerment Strategy role in the achievement Organizational Innovation in Diyala Public Company For Electrical Industrial. A questionnaire was used in data collection depending on the distribution of (32) forms to the research sample. Data were analyzed Using (SPSS)program. Using a number of statistical tools for tests the research hypothesis. The research found set of conclusions, one of the most important thinks was, that there is a linkage and impact relation between Employees Empowerment Strategy, its variables, and Organizational Innovation a
... Show MoreThe 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show MoreThis search includes the preparation of Schiff base ligand (SB) from condensation primary amine with vanillin. The new ligand was diagnosed by spectroscopic methods as Mass, NMR, CHN and FTIR. Ligand complexes were mixed from new (SB) and Anthranillic acid (A) with five metal (II) chlorides. The preparation and diagnosis were conducted by FTIR, CHN, UV-visible, molar conductivity, atomic absorption and magnetic moment. The octahedral geometrical shape of the complexes was proposed. The ligands and their new complexes were screened with two different types of bacteria.
Pseudomonas aeruginosa is a common and major opportunistic human pathogen, its causes many and dangersinfectious diseases due to death in some timesex: cystic fibrosis , wounds inflammation , burns inflammation , urinary tract infection , other many infections otitis external , Endocarditis , nosocomial infection and also causes other blood infections (Bacteremia). thereforebecomes founding fast and exact identification of P. aeruginosafrom samples culture very important.However, identification of this species may be problematic due to the marked phenotypic variabilitydemonstrated by samples isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA(rRNA) sequence data
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show More