Preferred Language
Articles
/
jeasiq-1824
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous variables (GARCHX) are applied to analyze and capture the volatility that occurs in the conditional variance of a linear model. Since time series observations rarely have linear or nonlinear components in nature or usually included together. Therefore, the main purpose of this paper is to employ the hybrid model technique according to Zhang methodology for hybrid models to combine the linear forecasts of the best linear model of ARMAX models and the nonlinear forecasts of the best nonlinear models of (ARCH, GARCH & GARCHX) models and thus increase the efficiency and accuracy of performance forecasting future values of the time series.

This paper is concerned with the modeling and building of the hybrid models (ARMAX-GARCH) and (ARMAX-GARCHX), assuming three different random error distributions: Gaussian distribution, Student-t distribution, as well as the general error distribution and the last two distributions were applied for the purpose of capturing the characteristics of heavy tail distributions which have a Leptokurtic characteristic compared to the normal distribution. This research adopted a modern methodology in estimating the parameters of the hybrid model namely the (two-step procedure) methodology. In the first stage, the parameters of the linear model were estimated using three different methods: The Ordinary Least Squares method (OLS), the Recursive Least Square Method with Exponential Forgetting Factor (RLS-EF), and the Recursive Prediction Error Method (RPM). In the second stage, the parameters of the nonlinear model were estimated using the MLE method and employing the numerical improvement algorithm (BHHH algorithm).

 

 

 

The hybrid models have been applied for modeling the relationship between the exogenous time series represented by the exchange rate and the endogenous time series represented by the unemployment rate in the USA for the period from (January 2000 to December 2017 i.e. 216 observations), and also the out-of-sample forecasts of unemployment rate in the last twelve values of (2018). The forecasting performance of the hybrid models and the competing individual model was also evaluated using the loss function accuracy measures (MAPE), (MAE), and the robust (Q-LIKE). Based on statistical measurements, the results showed the hybrid models improved the accuracy and efficiency of the single model. () hybrid model error whose conditional variance follows a GED distribution is the optimal model in modeling the bivariate time series data under study and more efficient in the forecasting process compared with the individual model and the hybrid model. This is due to having the lowest values for accuracy measures. Different software packages (MATLAB (2018a), SAS 9.1, R 3.5.2 and EViews 9) were used to analyze the data under consideration.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 18 2021
Journal Name
Chemical Papers
Analytical methods for the identification of micro/nano metals in e-cigarette emission samples: a review
...Show More Authors

View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Study of Corrosion Inhibition for Mild Steel in Hydrochloric Acid Solution by a new furan derivative
...Show More Authors
Abstract<p>The corrosion inhibition effect of a new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR) and potentiodynamic polarization. The obtained results indicated that the new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) (FSFD) has a promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. The density functional theory (DFT) study was performed on the new furan derivative (FSFD) at the B3LYP/6-311G (d, p) basis set level to explore the relation between their inhibition efficiency and molecular electro</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Nuclear Physics A
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd–odd heavy nuclei
...Show More Authors

View Publication
Scopus (51)
Crossref (49)
Scopus Clarivate Crossref
Publication Date
Mon Apr 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
A COMPARISON OF TOPOLOGICAL KRIGING AND AREA TO POINT KRIGING FOR IRREGULAR DISTRICT AREA IN IRAQ
...Show More Authors

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Surfactant Cloud Point Extraction as a Procedure of Preconcentrating for Metoclopramide Determination Using Spectro Analytical Technique
...Show More Authors

In current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Efficient Energy Management for a Proposed Integrated Internet of Things-Electric Smart Meter (2IOT-ESM) System
...Show More Authors

In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Aug 18 2021
Journal Name
Chemical Papers
Analytical methods for the identification of micro/nano metals in e-cigarette emission samples: a review
...Show More Authors

View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research &amp; Development
Loss of the Epigenetically Inactivated-X-Chromosome (Barr Body) a Potential Biomarker for Breast Cancer Development
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jun 30 2025
Journal Name
Medical Journal Of Babylon
Assessment of Six Polymorphic Variants as Genetic Risks for Coronary Artery Disease: A Case–Control Study
...Show More Authors
Abstract<sec> <title>Background:

Coronary artery disease (CAD) is the leading cause of death worldwide. Certain genetic polymorphisms play an important role in this multifactorial disease, being linked with increased risk of early onset CAD.

Objective:

To assess six genetic polymorphisms and clinical risk factors in relation to early onset nondiabetic Iraqi Arab CAD patients compared to controls.

Materials and Methods:

This case–contro

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Aug 05 2016
Journal Name
Wireless Communications And Mobile Computing
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati

... Show More
View Publication
Scopus (31)
Crossref (24)
Scopus Clarivate Crossref