Preferred Language
Articles
/
jeasiq-1824
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous variables (GARCHX) are applied to analyze and capture the volatility that occurs in the conditional variance of a linear model. Since time series observations rarely have linear or nonlinear components in nature or usually included together. Therefore, the main purpose of this paper is to employ the hybrid model technique according to Zhang methodology for hybrid models to combine the linear forecasts of the best linear model of ARMAX models and the nonlinear forecasts of the best nonlinear models of (ARCH, GARCH & GARCHX) models and thus increase the efficiency and accuracy of performance forecasting future values of the time series.

This paper is concerned with the modeling and building of the hybrid models (ARMAX-GARCH) and (ARMAX-GARCHX), assuming three different random error distributions: Gaussian distribution, Student-t distribution, as well as the general error distribution and the last two distributions were applied for the purpose of capturing the characteristics of heavy tail distributions which have a Leptokurtic characteristic compared to the normal distribution. This research adopted a modern methodology in estimating the parameters of the hybrid model namely the (two-step procedure) methodology. In the first stage, the parameters of the linear model were estimated using three different methods: The Ordinary Least Squares method (OLS), the Recursive Least Square Method with Exponential Forgetting Factor (RLS-EF), and the Recursive Prediction Error Method (RPM). In the second stage, the parameters of the nonlinear model were estimated using the MLE method and employing the numerical improvement algorithm (BHHH algorithm).

 

 

 

The hybrid models have been applied for modeling the relationship between the exogenous time series represented by the exchange rate and the endogenous time series represented by the unemployment rate in the USA for the period from (January 2000 to December 2017 i.e. 216 observations), and also the out-of-sample forecasts of unemployment rate in the last twelve values of (2018). The forecasting performance of the hybrid models and the competing individual model was also evaluated using the loss function accuracy measures (MAPE), (MAE), and the robust (Q-LIKE). Based on statistical measurements, the results showed the hybrid models improved the accuracy and efficiency of the single model. () hybrid model error whose conditional variance follows a GED distribution is the optimal model in modeling the bivariate time series data under study and more efficient in the forecasting process compared with the individual model and the hybrid model. This is due to having the lowest values for accuracy measures. Different software packages (MATLAB (2018a), SAS 9.1, R 3.5.2 and EViews 9) were used to analyze the data under consideration.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
Theoretical calculations involving a standard neutron yield distribution for the T-T nuclear fusion reaction
...Show More Authors

A standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Study a concentration of Uranium for samples of soil from Falluja City using PM-355
...Show More Authors

In this study a concentration of uranium was measured for twenty two samples of soil distributed in many regions (algolan, almoalmeen, alaskary and nasal streets) from Falluja Cityin AL-Anbar Governorate in addition to other region (alandlos street) as a back ground on the Falluja City that there is no military operations happened on it. The uranium concentrations in soil samples measured by using fission tracks registration in (PM-355) track detector that caused by the bombardment of (U) with thermal neutrons from (241Am-Be) neutron source that has flux of (5×103n cm-2 s-1). The concentrations values were calculated by a comparison with standard samples. The results shows that the uranium concentrations algolan street varies from(1.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Научный форум: Филология, искусствоведение и культурология: сб. ст. по материалам Lvi междунар. науч.-практ. конф. – No 2 (56). – М
Comparative analysis of zoomorphic metaphors in Russian and Arabic as a method for studying linguoculturology
...Show More Authors

: zonal are included in phraseological units, form metaphorical names for a person, give him various emotional and evaluative characteristics. This article examines the topic of zoomorphic metaphors that characterize a person in the Russian and Arabic languages in the aspect of their comparative analysis, since the comparative analysis of the metaphorical meanings of animalisms is an important method for studying cultural linguistics, since zoomorphic metaphors are a reflection of culture in a language.

Preview PDF
Publication Date
Mon Sep 01 2025
Journal Name
Journal Of Cancer Research Updates
Hematological Parameters in Liver Metastasis: A Comprehensive Clinical Evaluation for Early Detection in Iraqi Patients
...Show More Authors

Background: Liver metastasis significantly complicates cancer prognosis, yet easily accessible markers for its early detection and monitoring remain crucial. This study aimed to comprehensively evaluate key hematological parameters as potential indicators for liver metastasis in Iraqi patients. Methods: We conducted a cross-sectional study comparing hematological profiles between 90 patients (presumably with liver metastasis) and 30 healthy controls. White Blood Cell (WBC) count, Lymphocyte percentage, Neutrophil percentage, and Neutrophil-to-Lymphocyte Ratio (NLR) were analyzed. Given non-normal data distributions (confirmed by the Shapiro-Wilk test), group comparisons were performed using the non-parametric Mann-Whitney U test.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Telecommunication Systems
Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends
...Show More Authors

View Publication
Scopus (30)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Sat Nov 01 2025
Journal Name
Construction And Building Materials
Polyalphaolefin as a potential modifying agent for hard asphalt cement: Physical, rheological, and chemical characterization
...Show More Authors

Hard-grade asphalt binders like AC20-30 typically exhibit excessive stiffness, reduced penetration, and compromised workability, necessitating modification before use in paving applications. This study evaluates the efficacy of regular polyalphaolefin (PAO), a synthetic olefin-based lubricant, as a performance-enhancing modifying agent for such binders. AC20-30 was blended with PAO at dosages ranging from 2 wt.% to 10 wt.%, and the modified binders were characterized via penetration, ductility, softening point, and rotational viscosity measurements, alongside advanced rheological and chemical-morphological analyses. Incorporating PAO in AC20-30 asphalt progressively reduced the binder stiffness and enhanced its flexibility, with all modifie

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Oct 13 2022
Journal Name
Computation
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Solar Energy
A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules
...Show More Authors

View Publication
Scopus (118)
Crossref (113)
Scopus Clarivate Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Numerical Simulation of Gas Lift Optimization Using Artificial Intelligence for a Middle Eastern Oil Field
...Show More Authors
Abstract<p>Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit</p> ... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems
...Show More Authors

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
View Publication
Crossref (4)
Crossref