Preferred Language
Articles
/
jeasiq-1597
A Novel Invasive Weed Optimization Algorithm (IWO) by Whale Optimization Algorithm(WOA) to solve Large Scale Optimization Problems
...Show More Authors

Abstract  

  In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invasive Weed Optimization Algorithm (IWO), as for the Whale Optimization Algorithm (WOA) uses the intelligence of the swarms to reach the goal and achieve the best solution, which simulates the unique hunting behavior of humpback whales, which is called fishing by bubble trap hunting by creating distinctive bubbles along a circle or a path in the form of 9 has appeared for the first time in 2016 by Mirjalili and Lewis. In order to benefit from the intelligence of the flocks and to avoid falling into local solutions, the new hybridization between the IWO and WOA algorithm was proposed to launch the new hybrid algorithm (IWOWOA). The new hybrid algorithm (IWOWOA) was applied on 23 functions of large scale optimization problems, The proposed algorithm showed very high efficiency in solving these functions. The proposed algorithm was able to reach the optimal solutions by achieving the minimum value of most of these functions. This algorithm was compared with the basic algorithms IWO, WOA and two algorithms that follow the swarm system these algorithms are particle swarm optimization (PSO) and chicken swarm optimization (CSO) [7], they have been statistically tested by calculating the mean arithmetic μ and standard deviation σ for these functions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
...Show More Authors
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Sun Nov 17 2019
Journal Name
Journal Of Interdisciplinary Mathematics
Fuzzy preinvexity via ranking value functions with applications to fuzzy optimization problems
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Feb 16 2022
Journal Name
Journal Of Economics And Administrative Sciences
Solving Resource Allocation Model by Using Dynamic Optimization Technique for Al-Raji Group Companies for Soft Drinks and Juices
...Show More Authors

In this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
Ciphered Text Hiding in an Image using RSA algorithm
...Show More Authors

In this paper, a method for hiding cipher text in an image file is introduced . The
proposed method is to hide the cipher text message in the frequency domain of the image.
This method contained two phases: the first is embedding phase and the second is extraction
phase. In the embedding phase the image is transformed from time domain to frequency
domain using discrete wavelet decomposition technique (Haar). The text message encrypted
using RSA algorithm; then Least Significant Bit (LSB) algorithm used to hide secret message
in high frequency. The proposed method is tested in different images and showed success in
hiding information according to the Peak Signal to Noise Ratio (PSNR) measure of the the
original ima

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Gas Lift Optimization for Zubair Oil Field Using Genetic Algorithm-Based Numerical Simulation: Feasibility Study
...Show More Authors

The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Oct 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Robot Path Planning in Unknown Environments with Multi-Objectives Using an Improved COOT Optimization Algorithm
...Show More Authors

Scopus (11)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jul 08 2017
Journal Name
Neural Computing And Applications
A new algorithm of modified binary particle swarm optimization based on the Gustafson-Kessel for credit risk assessment
...Show More Authors

View Publication
Scopus (35)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Mon Sep 12 2022
Journal Name
Electronics
TWGH: A Tripartite Whale–Gray Wolf–Harmony Algorithm to Minimize Combinatorial Test Suite Problem
...Show More Authors

Today’s academics have a major hurdle in solving combinatorial problems in the actual world. It is nevertheless possible to use optimization techniques to find, design, and solve a genuine optimal solution to a particular problem, despite the limitations of the applied approach. A surge in interest in population-based optimization methodologies has spawned a plethora of new and improved approaches to a wide range of engineering problems. Optimizing test suites is a combinatorial testing challenge that has been demonstrated to be an extremely difficult combinatorial optimization limitation of the research. The authors have proposed an almost infallible method for selecting combinatorial test cases. It uses a hybrid whale–gray wol

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Semi E<sup>h</sup>-b-preinvexity and its applications to optimization problems
...Show More Authors
Abstract<p>In this paper, the class of semi <italic>E</italic> <sup> <italic>h</italic> </sup>-<italic>b</italic>-preinvex and pseudo <italic>E</italic> <sup> <italic>h</italic> </sup>-b-preinvex functions are defined as an extension of <italic>E-B</italic>-preinvex and <italic>h</italic>-preinvex functions. In this extension the functions <italic>E</italic>:ℝ<sup> <italic>n</italic> </sup> → ℝ<sup> </sup></p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution
...Show More Authors

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M

... Show More
View Publication Preview PDF
Crossref