Preferred Language
Articles
/
jeasiq-154
Comparison of Slice inverse regression with the principal components in reducing high-dimensions data by using simulation
...Show More Authors

This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions,    (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear multiplicity between most explanatory variables. These new combinations of linear compounds resulting from the two methods will reduce the number of explanatory variables to reach a new dimension one or more which called the effective dimension. The mean root of the error squares will be used to compare the two methods to show the preference of methods and a simulation study was conducted to compare the methods used. Simulation results showed that the proposed weight standard Sir method is the best.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 03 2025
Journal Name
Internationaljournalof Economicsandfinancestudies
CROSS-SECTIONAL REGRESSION WITH PROXIES: A SEMI-PARAMETRIC METHOD
...Show More Authors

This study investigates asset returns within the Iraq Stock Exchange by employing both the Fama-MacBeth regression model and the Fama-French three-factor model. The research involves the estimation of cross-sectional regressions wherein model parameters are subject to temporal variation, and the independent variables function as proxies. The dataset comprises information from the first quarter of 2010 to the first quarter of 2024, encompassing 22 publicly listed companies across six industrial sectors. The study explores methodological advancements through the application of the Single Index Model (SIM) and Kernel Weighted Regression (KWR) in both time series and cross-sectional analyses. The SIM outperformed the K

... Show More
View Publication
Scopus
Publication Date
Sat Oct 29 2022
Journal Name
Current Trends In Geotechnical Engineering And Construction (pp.52-61)
Simulation of Residual Chlorine in Al-Yarmouk Drinking Water System Using WaterGEMS
...Show More Authors

Abstract To ensure that the distribution system has safe drinking water. It is necessary to know the residual chlorine concentrations at various points in the network. A chlorine photometer device was used to measure twenty points taken every day for a week at a selected time in the distribution system. Both pressures and flows in the network were measured using bourdon gauge and Tuf-2000H Handheld Digital ultrasonic flow meters. WaterGEMS CONNECT Edition update one software was used to simulate the flow in the network. The Baghdad water department provided the data about the network, such as the lengths of pipes, the layout of the network, and pipes diameters. The network calibrated consists of 781 pipes of different lengths and 542 juncti

... Show More
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 23 2016
Journal Name
Computer Science & Information Technology ( Cs & It )
Modelling Dynamic Patterns Using Mobile Data
...Show More Authors

View Publication
Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
An Embedded Data Using Slantlet Transform
...Show More Authors

Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 01 2019
Journal Name
Journal Of Engineering
Non-Destructive Damage Assessment of Five Layers Fiber Glass / Polyester Composite Materials Laminated Plate by Using Lamb Waves Simulation
...Show More Authors

Composite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Al-kindy College Medical Journal
A Comparison between High Ablative Versus Usual Dosages of Iodine-131 in Inducing Hypothyroidism After One Year of Therapy in Hyperthyroid Patients
...Show More Authors

Background: Radioactive iodine-131 therapy is highly effective in treating patients with hyperthyroidism. An ablative dose is preferred by a number of endocrinologists, and, a fixed dose protocol seems to be better than a calculated dose in real practice.

Objective: To check for hypothyroidism in hyperthyroid patients one year after RAI therapy, comparing between the results of high ablative versus usual dosages of RAI-131.

 Methods:  This study included 174 hyperthyroid patients, 101 males and 73 females, divided into 2 groups, the first consisted of 162 patients given a usual fixed dose of RAI while the second consisted of 12 patients given a high fixed ablati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Study of Mass Transfer Coefficient in Slurry Bubble Column Reactor Using Neural Network
...Show More Authors

 

The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Joiv : International Journal On Informatics Visualization
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Work Innovation
Reducing the negative effects of non-compliance and unethical behaviour by adopting the risk approach to human resources management
...Show More Authors

View Publication
Scopus (4)
Scopus Crossref