Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the remaining constant parameters and time-varying parameters are estimated by using a semi-parametric regression model and then comparing this method with methods based on numerical discretization methods, which includes two stages. In the first stage we estimate the state variables and their derivatives by (p spline) , In the second stage we use Methods of numerical discretization methods (the Euler discretization method and the trapezoidal discretization method), where the comparison was done using simulations and showed the results superior to the trapezoidal method of numerical differentiation where it gave the best estimations to balance between accuracy in estimation And high arithmetic cost.
Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreThis research deals with a part of our heritage and Arab culture, which is the poetry of contemporary Islamic poets, especially the poetry that was said in the mother in contemporary Islamic poetry, when extrapolating the offices of some contemporary Islamic poets found a clear presence of the mother, and during the search for the subject or its I found that the subject did not receive research and study, although the bureaus of contemporary Islamic poets included in it a huge amount of verses in which they stood at the mother Pharthua, and expressed their feelings and emotions towards them, and accordingly this research tagged (mother in contemporary Islamic poetry _ Dr Artistic models in models of contemporary Islamic poetry) to stand
... Show MoreAbstract:-
The approach maintenance and replacement one of techniques of operations research whom cares of the failure experienced by a lot of production lines which consist of a set of machines and equipment, which in turn exposed to the failure or work stoppages over the lifetime, which requires reducing the working time of these machines or equipment below what can or conuct maintenance process once in a while or a replacement for one part of the machine or replace one of the machines in production lines. In this research is the study of the failure s that occur in some parts of one of the machines for the General Company for Vege
... Show MoreThe estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To
... Show MoreThe use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models
In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear
... Show MoreAverage per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreIn this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
The time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound
The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.
Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used
... Show MoreMaulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the method To address a problem and method To address a problem , In this research a comparisons are employed between the biased method and unbiased method with Bayesian using Gamma distribution method addition to Ordinary Least Square metho
... Show More