In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
Comparative literature is one of the important research topics in finding new relations and results that other types of studies do not allow.
The present research is a comparative study between two contemporary poets : Al-Sayyab and Prévert. The reason for accomplishing this research is Al-Sayyab’s reading for the western literature. Moreover, the study sheds a light on translational criticism.
It tackles the lives of the two writers and their points of similarities and differences. Prévert and Al-Sayyab’s are two modern poets. The first employed his daily routines to express reality, specially the events of the two world wars. The second’s pain, on the other hand, was the starting point to express others’ suffe
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreAbstract
This research aims to analyze the reality of the production process in an assembly line Cars (RUNNA) in the public company for the automotive industry / Alexandria through the use of some Lean production tools, and data were collected through permanence in the company to identify the problems of the line in order to find appropriate to adopt some Lean production tools solutions, and results showed the presence of Lead time in some stations, which is reflected on the customer's waiting time to get the car, as well as some of the problems existing in the car produced such as high temperature of the car, as the company does not take into account customer preferences,
... Show MoreElectrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show MoreOne wide-ranging category of open source data is that referring to geospatial information web sites. Despite the advantages of such open source data, including ease of access and cost free data, there is a potential issue of its quality. This article tests the horizontal positional accuracy and possible integration of four web-derived geospatial datasets: OpenStreetMap (OSM), Google Map, Google Earth and Wikimapia. The evaluation was achieved by combining the tested information with reference field survey data for fifty road intersections in Baghdad, Iraq. The results indicate that the free geospatial data can be used to enhance authoritative maps especially small scale maps.
Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreTakbiratul Ehram "The First Takbeer to Start Prayer" means: the words that the worshiper says to start his prayers, and refrain from anything invalidates it. the findings revealed that the four school jurists agreed that the prayer is not valid without Takbiratul Ehram "The First Takbeer to Start Prayer", and they disagreed on its description, so the majority of jurists said that it is a pillar, and some of them called it an obligatory, but Hanafi made it a condition. Likewise, the four jurists agreed that the one who articulates Takbiratul Ehram "The First Takbeer to Start Prayer" with the word: “Allahu Akbar,”; his Takbeer is correct, and they disagreed about the one who adds a word, or replaced it with another, where the m
... Show More