This research discusses the logic of the balance of power in the field of International Relations. It focuses on the structural-systemic version of the theory because of its centrality to the realist research program within the field. The paper examines the conventional wisdom, which argues that balances of power, in a self-help system, will form regardless of the state’s motives (or intentions); It emerges as an unintended recurring consequence of the interaction of units in anarchy, which primarily seeks superior, not an equal power. This logic assumes that hegemony does not form (or fail) in a multi-state system, because its threats (actual or perceived) to the system instill fear and provoke counterbalancing behavior by other states. The paper contrasts this logic with another one that does not accept that balancing is the normal state of international systems and believes that this argument reflects an ignorance of non-western history. In contrast, it argues in favor of expansionist policies and hegemony in the international system. It assumes a succession of "hegemonies", not "balances", because hierarchy systems, such as anarchy, are solid and continuous structures. The paper concludes that balancing has a strong logic, but it is contested among the realist scholars in International Relations discipline.
In this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
The study aimed to evaluate educational programs efficiency in applying the best educational practices to educate students from the dangers of indecent behaviors, in line with higher education policy and the appropriateness of educational program dimensions to spread awareness among students to not fall into the indecent behaviors clutches. The study adopted the inductive exploratory approach through structural equation modeling and the descriptive analysis of the collected data from randomly selected sample (n=385) from educational academics at Northern Border University in the Saudi Arabia using a specially designed survey tool to meet study purposes to evaluate dimensions of teaching methods, evaluation tools, training courses, course
... Show MoreIn this work, an important sugar alkynyl ether has been synthesized in two subsequent steps starting from commercially available D-galactose (3). This kind of compounds is highly significant in the synthesis of biologically active molecules such as 1,2,3-triazole and isoxazoles. In the first step, galactose (3) was reacted with acetone in the presence of anhydrous copper (II) sulfate to produce 1,2:3,4-di-O-isopropylidene-α-D-galactose (4) in good yield. The latter was reacted with excess of 3-bromoprop-1-yne in DMF in the presence of NaOH pellets to afford the target molecule 5 in a very good yield. The temperature of this step is crucial in determining the reaction yi
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job