Dans le roman moderne, le type du héros est depuis longtemps devenu suspect. Il risque même de disparaitre dans ce qu´on désigne le Nouveau Roman qui, se concentrant plutôt sur les objets, décrits minutieusement, refuse la fonction épistémologique traditionnelle de la littérature. Cette conception se manifeste, sur le plan formel, par certains traits typiques, comme la relativisation des points de vue, la décomposition de l´action, la destruction du temps, la décomposition de l´espace et la désintégration du personnage romanesque dont les liens avec la société sont coupés.
FG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time. Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle to involve four types of binary code books (i.e. Pour when , Flat when , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreThis article investigates how an appropriate chaotic map (Logistic, Tent, Henon, Sine...) should be selected taking into consideration its advantages and disadvantages in regard to a picture encipherment. Does the selection of an appropriate map depend on the image properties? The proposed system shows relevant properties of the image influence in the evaluation process of the selected chaotic map. The first chapter discusses the main principles of chaos theory, its applicability to image encryption including various sorts of chaotic maps and their math. Also this research explores the factors that determine security and efficiency of such a map. Hence the approach presents practical standpoint to the extent that certain chaos maps will bec
... Show MoreThe effect of using three different interpolation methods (nearest neighbour, linear and non-linear) on a 3D sinogram to restore the missing data due to using angular difference greater than 1° (considered as optimum 3D sinogram) is presented. Two reconstruction methods are adopted in this study, the back-projection method and Fourier slice theorem method, from the results the second reconstruction proven to be a promising reconstruction with the linear interpolation method when the angular difference is less than 20°.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show More