Environmental Control Systems form one of the integral tasks of the designer, resulting from his/her acquaintance with the nature of sites and the way they are deployed to achieve modern space entity which is witnessing significant development in the field of interior design.Good deployment of these systems offer us, as designers, high potential and several varied solutions to configure internal spaces characterised as a fertile field of study and knowledge.The research problem was identified in the marginalisation of the importance of Environmental Control Systems as an important designing factor to achieve integrated design. The research problem was demonstrated in Chapter One, along with defining the objectives and formulating the research hypotheses.Chapter Two contained the research theoretical framework, which consists of a review of overall design trends and options when addressing Environmental Control Systems, by studying the most important influential factors of these systems, followed by key indicators derived from the theoretical framework which were, then, utilised in subsequent research procedures. In Chapter Three comes the stage of identifying the research methodology, the research community and the research sample, represented by two samples, and collecting information about them. The research tool was developed through what is construed from the theoretical framework.Chapter Four represented analysis of the content of selected research sample and results of the research were demonstrated, and, in light of these results, the research came out with findings which identified and explained the main differences resulting from deploying the best processors for Heating and Cooling Systems and, therefore, the most important design proposals and recommendations were identified to reach approved design decisions and utilising them to acquire a design product which achieves its objective
This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat
... Show MoreIn this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreBackground: Optimal root canal retreatment was required safe and efficient removal of filling material from root canal. The aim of this in vitro study was to compare the efficacy of reciprocating and continuous motion of four retreatment systems in removal of root canal filling material. Materials and Methods: Forty distal roots of the mandibular first molars teeth were used in this study, these roots were embedded in cold clear acrylic,roots were instrumented using crown down technique and rotary ProTaper systemize Sx to size F2 ,instrumentation were done with copiousirrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilledwater, roots were obturated with AH26 sealer and Prota
... Show MoreBackground: Optimal root canal retreatment was required safe and efficient removal of filling material from root canal. The aim of this in vitro study was to compare the efficacy of reciprocating and continuous motion of four retreatment systems in removal of root canal filling material. Materials and Methods: Forty distal roots of the mandibular first molars teeth were used in this study, these roots were embedded in cold clear acrylic,roots were instrumented using crown down technique and rotary ProTaper systemize Sx to size F2 ,instrumentation were done with copiousirrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilledwater, roots were obturated with AH26 sealer and Prota
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show More