The current research is concerned with methods of formation and their effect on the sintering process of ceramic materials. The research is divided into a number of chapters. The first chapter addressed the research structure (the research problem, importance, objective, limits, and it also defined the terms used in the research). The second chapter addressed the theoretical framework, where the theoretical framework has been divided into three sections. The first section dealt with methods of formation of ceramic materials including: Plasticizing method 2- semi-dry pressing method 3- dry pressing method 4- extrusion method 5- casting method.
The researcher found that there is a clear difference between the methods through her formation of tables and as it is clear in the research body. As for the second section, it addressed studying the raw ceramic materials that the researcher has classified into: 1- plastic raw materials 2- non-plastic raw materials. In the third section, the researcher addressed types and divisions of sintering: First: sintering in the solid state and its stages. Second: sintering with the presence of an effective liquid. Third: sintering by pressing and hot compression.
The third chapter consists of the research procedures that addressed 1- preparing the raw material. 2- Examination of the raw material through a- chemical analysis b- metal composition c- thermal microscope examination. 3- Preparing the mixtures where four hypotheses have been put and in every hypothesis, the researcher dealt with what results from mixing the materials (Silica, crock, sodium carbonate, and kaolin under various temperatures and pressure). 4- preparing the laboratory models in which the researcher tackled 1- mixing the materials 2- forming the laboratory models 3- drying process 4-burning process 5- determining the general features for the models. The researcher has conducted some experiments to determine the features of the models after the burning process according to the following: Calculating the longitudinal contraction b- water suction c-virtual space. The fourth chapter addressed and discussed the research results. The researcher reached at the results through conducting the laboratory examinations for the samples within tables (4, 5) affixed in the research. The recommendations and suggestions put forth by the researcher to complete the scientific approach for the research are as follows: 1- not to start the research before finding the oven. 2- Conducting examinations using a thermal microscope before burning 3- burning at a slow timing rate to prevent the occurrence of distortions.
The present investigation is concerned for the purification of impure zinc oxide (80-85 wt %) by using petroleum coke
(carbon content is 76 wt %) as reducing agent for the impure zinc oxide to provide pure zinc vapor, which will be
oxidized later by air to the pure zinc oxide.
The operating conditions of the reaction were studied in detail which are, reaction time within the range (10 to 30 min),
reaction temperature (900 to 1100 oC), air flow rate (0.2 to 1 l/min) and weight percentage of the reducing agent
(petroleum coke) in the feed (14 to 30 wt %).
The best operating conditions were (30 min) for the reaction time, (1100 oC) for the reaction temperature, (1 l/min) for
the air flow rate, and (30 wt %) of reducing
The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreThe removal of COD from wastewater generated by petroleum refinery has been investigated by adopting electrocoagulation (EC) combined with adsorption using activated carbon (AC) derived from avocado seeds. The process variables influencing COD removal were studied: current density (2–10 mA/cm2), pH (4–9), and AC dosage (0.2–1 g/L). Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to construct a mathematical model of the EC/AC process. Results showed that current density has the major effect on the COD removal with a percent of contribution 32.78% followed by pH while AC dosage has not a remarkable effect due to the good characteristics of AC derived from avocado seeds. Increasing current density gives be
... Show MoreIn this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of
... Show MorePilot-scale dead end microfiltration membranes were carried out to determine the feasibility of the process for treating the oily wastewater which discharge from some Iraqi factories such as power station of south of Baghdad and the general company of petrochemical industries. Polypropylene membranes (cylindrical shape) with different pore diameters (1 and 5 micron) were used to conduct the study on micromembrane process. The variables studied are oil concentration (100 – 1000 ppm), feed flow rate (20 – 40 l/h), operating temperature (31 – 50°C) and time (0 – 3 h). It was found that the flux increases with increasing feed flow rate, temperature and pore size of membrane, and decreases with increasing oil concentration and operating
... Show MoreThe current study is unique in its emphasis on investigating design operation and concept from multiple scientific perspectives: including invention, technique, and design components. This research tends to study the methodology and creation of design process in a holistic manner so that the readers may grasp their characteristics and properties down to its minute epistemological detail. The investigation of the design concept is where the real groundwork and pressing need for the study begin. Creation and methodology are two primary concepts in relation to design these relationships can be formed in any design because of the various forces that act upon it. The primordial objective of this study is to evaluate the relationship betw
... Show More