The research addressed the formal functions resulting from the use of various guiding signs in the design of the interior spaces of airports in various pragmatic, expressive and psychological aspects. The aim is to identify the functions the guiding signs perform in facilitating and organizing the travelers' movement and satisfying the needs of the visitors and users of the unfamiliar places which they intend to visit, the nature of the services offered by these signs as one of the important parts within their general design. The research also identified the concept and types of signs as a means of visual communication and how to employ them in the design of the airports public spaces, and what are the criteria of their use and functions that they achieve as one of the elements of the space and the user's surrounding environment to satisfy the design purposes for which they were designed both functionally and aesthetically. The researcher arrived at a set of results the most important of which are as follows: The guiding signs do not achieve their design function unless they have formal elements that have comprehensible, easy, and clear expressions through which they can achieve intellectual and cognitive response by the recipient by a visual message in the form of a symbolic and expressive language in order to signify certain information conveyed by the forms, shapes, and colors intended to be recognized by the recipient in order to assist him in understanding the space and the process of facilitating his movement and various activities in the least possible time.
In order for the guiding sign to achieve its functional goals as a successful design product, there should be certain criteria put by the designer in the space that surrounds the sign, for instance, choosing the suitable location, the nature of the lights used, and the processed raw material, in addition to the suitability of the design and its various elements which constitute the only way in order for the guiding signs to achieve their functions in three aspects, i.e. utilization, symbolic expression and the desired sensory and aesthetic aspects.
A compact microstrip six-port reflectometer (SPR) with extended bandwidth is proposed in this paper. The design is based on using 16-dB multi-section coupled line directional couplers and a multi-section 3-dB Wilkinson power divider operating from 1 to 6 GHz. The proposed SPR employs only two calibration standards: a matched load and an open load. As compared to other dielectric substrates, fabricating the proposed SPR involves using a low-cost (FR4) substrate. A novel algorithm is also proposed to estimate the complex reflection coefficient over the frequency ranges at which the standard performance of the circuit components is not fully satisfied. The new algorithm is based on the circles’ intersection points, which have been de
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the
... Show MoreThere is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
Ball and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreThis paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu
... Show MoreThis paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreThe research aims at benefiting from the technological development and the technical progress. This development necessitated that the educational process take advantage of this progress, and the development of special computer software, especially the design programs, made the two researchers think about how to benefit from these design programs in teaching students the skills of theatrical design.
The current search aims at:
Identifying the effect of 3Ds Max in developing the skill of theatrical decoration design among the students of the Department of Art Education "Third stage / Department of Art Education / Faculty of Fine Arts / University of Diyala for the academic year 2014-2015.
The researchers used the ex
... Show More