The purpose of this research is to identify heritage and highlight its value by drawing on its decorative vocabulary and integrating it with the Arabic calligraphy to revive the heritage in a contemporary style, and to create decorative design units inspired by Sadou and Arabic calligraphy and to employ them in the modern fashion designs. The applied descriptive approach has been used in this research, and the research community is made of women in Riyadh area. The tools used in this research were the questionnaire and the observation. The most important results of the research are: the design of decorative units from the integration of Arabic calligraphy and the decorations of the Saduo, and the use of these units in the design of the of women's fashion using the method of printing, and manual and automatic embroidery. The research has stressed the importance of integrating Saduo decorations with the calligraphy in raising the aesthetic value of the dress, and contributing to the revival of the heritage, and promoting the national identity through fashion. One of the most important recommendations in this research is to encourage local designers to use Arabic calligraphy, sadou decoration in fashion design, and textiles. The entities concerned with heritage events make exhibitions, and various presentations to identify heritage, especially folklore, and to increase interest in the study of Arabic calligraphy - with the artistic and aesthetic values that it has - in universities and academic programs through the inclusion of calligraphy and supporting the garment industry, and textiles inspired by Saudi traditional heritage to fit the modern era, while retaining its originality which would be helping to revive the heritage and promote the national identity of the members of society..
FG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
Lasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenom
... Show MoreIn this paper, we introduce and discuss an extended subclass〖 Ą〗_p^*(λ,α,γ) of meromorphic multivalent functions involving Ruscheweyh derivative operator. Coefficients inequality, distortion theorems, closure theorem for this subclass are obtained.
This contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectiv
... Show MoreConservative pipes conveying fluid such as pinned-pinned (p-p), clamped–pinned (c-p) pipes and clamped-clamped (c-c) lose their stability by buckling at certain critical fluid velocities. In order to experimentally evaluate these velocities, high flow-rate pumps that demand complicated fluid circuits must be used.
This paper studies a new experimental approach based on estimating the critical velocities from the measurement of several fundamental natural frequencies .In this approach low flow-rate pumps and simple fluid circuit can be used.
Experiments were carried out on two pipe models at three different boundary conditions. The results showed that the present approach is more accurate for est
... Show Morethis work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant
... Show MoreIn this work, porous silicon (PS) are fabricated using electrochemical etching (ECE) process for p-type crystalline silicon (c-Si) wafers of (100) orientation. The structural, morphological and electrical properties of PS synthesized at etching current density of (10, 20, 30) mA/cm2 at constant etching time 10 min are studied. From X-ray diffraction (XRD) measurement, the value of FWHM is in general decreases with increasing current density for p-type porous silicon (p-PS). Atomic force microscope (AFM) showed that for p-PS the average pore diameter decreases at 20 mA. Porous silicon which formed on silicon will be a junction so I-V characteristics have been studied in the dark to calculate ideality factor (n), and saturation current (Is
... Show More