The present research aims at revealing the advertising image semiotics in the American printed poster by following the image's significance and its transformations through the poster design trends and indicating its nature whether it is an explicit or implicit image. The limits of the research were the American printed poster during 2016-2018 period. The theoretical side was determined by two sections, the first: (the advertising image semiotics) and the second (design trends in the printed poster). The research procedures were represented by the research method adopted in the analysis of the sample models identified in four models taken from the research community which contains (24) models. The selection was made according to the trend and type of the mark and then analyzed according to a research tool whose paragraphs were bases taken from the theoretical framework. After analyzing the models that represent the research sample, the researcher reached at a set of results and conclusions and the most prominent of these were that ( the designers aimed at topics devoted in the collective memory such as the pigeon, olive branch, umbrella and freedom statute as part of the act of communication and the communication theory which the designer does not find difficult to convey), in accordance with the subject of his research in light of the focus on the advertising image based on the mark logic and his analysis of the semiotics of that image.
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show Moreسها علي حسين, هويدة إسماعيل إبراهيم, Journal of Physical Education, 2017 - Cited by 1
Abstract The goal of current study was to identify the relationship between addiction of self-images (Selfie) and personality disorder of narcissus, and the difference of significance the relationship between addiction self-images (selfie) and personality disorder narcissus at students of Mustansiriya university, addiction self- images (selfie) defined: a photograph that one has taken of oneself, typically one taken with a smartphone or webcam and shared via social media, edit and down lowed to social networking sites, and over time, the replacement of normal life virtual world, which is accompanied by a lack of a sense of time, and the formation of repeated patterns increase the risk of social and personal problems. To achieve the goals
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show More