If the Industrial Revolution has enabled the replacement of humans with machines, the digital revolution is moving towards replacing our brains with artificial intelligence, so it is necessary to consider how this radical transformation affects the graphic design ecosystem. Hence, the research problem emerged (what are the effects of artificial intelligence on graphic design) and the research aimed to know the capabilities and effects of artificial intelligence applications in graphic design, and the study dealt in its theoretical framework with two main axes, the first is the concept of artificial intelligence, and the second is artificial intelligence applications in graphic design. The descriptive approach adopted a method of content analysis to analyze three research samples to reach a number of results and conclusions, including:
1- Due to the employment of artificial intelligence in graphic design, it has facilitated the designer's work in some routine design aspects and made him focus on the creative aspects of design more broadly.
2- 2- As a result of the rapid scientific progress, the issue of creative awareness when applying artificial intelligence will be a temporary problem that can be overcome in the future and will accelerate the creative competition between it and the graphic designer
A Tonido cloud server provides a private cloud storage solution and synchronizes customers and employees with the required cloud services over the enterprise. Generally, access to any cloud services by users is via the Internet connection, which can face some problems, and then users may encounter in accessing these services due to a weak Internet connection or heavy load sometimes especially with live video streaming applications overcloud. In this work, flexible and inexpensive proposed accessing methods are submitted and implemented concerning real-time applications that enable users to access cloud services locally and regionally. Practically, to simulate our network connection, we proposed to use the Raspberry-pi3 m
... Show MoreThe integration of arti cial intelligence (AI), whether through devices or software, has become a critical tool in analyzing and evaluating technical performance. AI signi cantly contributes to enhancing athletic performance by enabling accurate data analysis and supporting educators in developing effective training programs and interactive curricula. This study addresses a noticeable gap in the literature regarding the attitudes and inclinations of educators toward AI in physical education and sport sciences—a gap often attributed to limited awareness and lack of access to moderntechnologies.Theprimaryaimofthestudyistoexaminethetendenciesandperceptionsoffemaleinstructorsin physical education and sport sciences toward the use of AI
... Show More"1998 onwards, a span reporting 1000s of studies depicts the ever-increasing Schiff bases and their complexes applicability; this study genetically tests the research of the last 20 years. The variety of these molecules structural has made them obtainable for a so broad ambit for implementations of biological. They are eminent and because of this unique feature they find their position in the quantitative and qualitative calculation of metals in the aqueous medium. It demonstrated to be prominent catalysts and showed an enjoyable effect of fluorescence. Definitively, Schiff base fissures gotten situation of a unique during bio-experiments and in vitro to develop drugs with a large number of biological structures containing parasites
... Show MoreNanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show More