If the Industrial Revolution has enabled the replacement of humans with machines, the digital revolution is moving towards replacing our brains with artificial intelligence, so it is necessary to consider how this radical transformation affects the graphic design ecosystem. Hence, the research problem emerged (what are the effects of artificial intelligence on graphic design) and the research aimed to know the capabilities and effects of artificial intelligence applications in graphic design, and the study dealt in its theoretical framework with two main axes, the first is the concept of artificial intelligence, and the second is artificial intelligence applications in graphic design. The descriptive approach adopted a method of content analysis to analyze three research samples to reach a number of results and conclusions, including:
1- Due to the employment of artificial intelligence in graphic design, it has facilitated the designer's work in some routine design aspects and made him focus on the creative aspects of design more broadly.
2- 2- As a result of the rapid scientific progress, the issue of creative awareness when applying artificial intelligence will be a temporary problem that can be overcome in the future and will accelerate the creative competition between it and the graphic designer
The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreThe prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the appl
... Show MoreThe study aims at:
1- Identifying the contemporary educational approaches in teaching arts.
2- The effectiveness of using the visual thinking strategy in photography subject for the first year students in the institute of fine arts/Holy city of Kadhimiyah.
The study sample is made of (30 ) first year students (in the institute of fine arts/in Holy city of Kadhimiyah) distributed into two groups, an experimental group made of (15) students and a control group having the same number of students in order to conduct the test. The test for the visual thinking strategy in the subject of photography has been designed and the validity and reliability for the research tool have been verified. In order to demonstrate the results of the
A .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreTodays, World is faced an energy crisis because of a continuous increasing the consumption of fuels due to intension demand for all types of vehicles. This study is one of the efforts dealing with reduce the weight of vehicles by using a new material of sandwich steel, which consists of two skin steel sheets with core of a polymer material. Resistance spot welding (RSW) can be easily implemented on metals; however a cupper shunt tool was designed to perform the resistance welding of sandwich steel with DP800 cover sheets to resolve a non-conductivity problem of a polymer core. Numerical simulations with SORPAS®3D were employed to test the weldability of this new material and supported by many practical experiments. In conclus
... Show MoreKriging, a geostatistical technique, has been used for many years to evaluate groundwater quality. The best estimation data for unsampled points were determined by using this method depending on measured variables for an area. The groundwater contaminants assessment worldwide was found through many kriging methods. The present paper shows a review of the most known methods of kriging that were used in estimating and mapping the groundwater quality. Indicator kriging, simple kriging, cokriging, ordinary kriging, disjunctive kriging and lognormal kriging are the most used techniques. In addition, the concept of the disjunctive kriging method was explained in this work to be easily understood.