The research discussed the propositions of functional structures and the requirements for their transformation according to the variables of use and human interaction through the variables of functions with one form products، multifunctional variables، and transforming form in one product. The patterns of user’s interaction with products were discussed through the variables of functional type، starting from defining the types of functions in the industrial product structures to: practical functions، which were classified into: informational functions، ergonomic functions، use، handling، comfort، global، anthropometric adaptation and physical postures. While the interaction variables were discussed according to the meaning function based on the symbolic meaning that the user attributes to the product design، which were categorized into: cultural (relational)، social and personal (emotional). As well as the function of maintaining trust and social function، which has been categorized into: the relational function، the communication and identification function، the remembering function، the function stemming from the necessity of daily interaction، the economic function، the self-activation function، and the aesthetic function، which is determined by finding specific pleasures for the user، which are classified as follows: Physical pleasure، social pleasure، psychological pleasure and intellectual pleasure. The aesthetic function of the product can be analyzed according to elements of: shape، material، surface and color. And on the discussion of the variables of user interaction of the functional type، a number of conclusions were reached that were، in total، an objective analysis of the relationships of functions with each other and how the functional type was affected by the contexts and requirements of user interaction and the transformation of functional structures based on the necessities of physical، intellectual and emotional interaction، within the framework of Total user experience.
The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi
As a result of the development and global openness and the possibility of companies providing their services outside their spatial boundaries that were determined by them, and the transformation of the world due to the development of the means of communication into a large global market that accommodates all products from different regions and of the same type and production field, competition resulted between companies, and the race to obtain the largest market share It ensures the largest amount of profits, and it is natural for the advertising promotion by companies for their product to shift from an advertisement for one product to a competitive advertisement that calls on the recipient to leave the competing product and switch to it
... Show MoreThe automatic liquid filling system is used in different applications such as production of detergents, liquid soaps, fruit juices, milk products, bottled water, etc. The automatic bottle filling system is highly expensive. Where, the common filling systems required to complex changes in hardware and software in order to modify volume of liquid. There are many important variables in the filling process such as volume of liquid, the filling time, etc. This paper presents a new approach to develop an automatic liquid filling system. The new proposed system consists of a conveyor subsystem, filling stations, and camera to detect the level of the liquid at any instant during the filling process. The camera can detect accurately the leve
... Show MoreAbstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance
With the spread of the use of liquefied petroleum gas (LPG) in developing countries for use in domestic cooking with the increase in the expansion and distribution of gas pipelines for residential buildings, the 2002 World Summit focused on sustainable development in clean energy for natural gas (NG) and LPG. The research aims to focus on the important aspects of design sustainability from an environmental point of view to reduce gas leakage, accidents, and explosions that occur socially to expand the distribution of LPG and motivate the consumers to use it instead of natural gas and other fuels, and from an economic point of view to take into account the annual cost and aesthetic imp
The main objective of the present work is to find a method increases the efficiency of the airfoil that is used for blade in wind turbine, wing in aircraft, propeller and helicopter (like NACA 4412). By overcoming the separation of flow at high angle of attacks, a slotted airfoil had been used and solved numerically through connecting the pressure side in the bottom surface with the suction side in the top surface of the airfoil to energize the separated flow. Slot exit, width and slope were considered as a parameters of slot configuration to determine the effective design of consideration. Reynolds number was taken as [1.6 x106 ] and the angle of attacks were ranged from (0o - 20o ). The numerical solution with Ansys Fluent commercial prog
... Show MoreThis paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreTable tennis is considered one of the fast base sports that the player needs to have the speed of performance and awareness, especially in straight forward and back strikes, which is an important offensive skills, and the player success depends on his perception speed to the point of the fall of the ball in the arena of his competitor. But there is no way to measure cognitive processing speed. Therefore, the researchers sought to design a test that measures this ability to ensure its scientific evaluation, and then establish standard scores for this test for the players of the specialized school of table tennis, to help evaluate them objectively and move away from subjective estimates when evaluating and developing measuring instruments in
... Show MoreFlexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show More