Preferred Language
Articles
/
jcoeduw-981
Key Exchange Management by using Neural Network Synchronization
...Show More Authors

The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achieving the synchronization.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (13)
Crossref (12)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Compared with Genetic Algorithm Fast – MCD – Nested Extension and Neural Network Multilayer Back propagation
...Show More Authors

The study using Nonparametric methods for roubust to estimate a location and scatter it is depending  minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .       

It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 04 2018
Journal Name
Journal Of Electrical Engineering And Technology
An efficient selective method for audio watermarking against de-synchronization attacks
...Show More Authors

View Publication
Scopus (9)
Scopus
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
An Application of Non-additive Measures and Corresponding Integrals in Tourism Management
...Show More Authors

Non-additive measures and corresponding integrals originally have been introduced by Choquet in 1953 (1) and independently defined by Sugeno in 1974 (2) in order to extend the classical measure by replacing the additivity property to non-additive property. An important feature of non –additive measures and fuzzy integrals is that they can represent the importance of individual information sources and interactions among them. There are many applications of non-additive measures and fuzzy integrals such as image processing, multi-criteria decision making, information fusion, classification, and pattern recognition. This paper presents a mathematical model for discussing an application of non-additive measures and corresp

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of The Iraqi University
Exclusion optimal portfolio from outlier by using fuzzy c-means clustering - analytical research at the Iraqi Stock Exchange
...Show More Authors

This research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Improved Image Security in Internet of Thing (IOT) Using Multiple Key AES
...Show More Authors

Image is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the tran

... Show More
View Publication Preview PDF
Scopus (19)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Tue Aug 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Relationship of the key elements of Knowledge management with strategic performance / filed research sample of private banks in Baghdad
...Show More Authors

objective  the research to diagnosis and interpretation of the nature of the correlation between the  basic elements of knowledge management (tecgnology , structure , culture , process , human resource ) and the strategic performance of the Iraqi private banks, the research community and the level dimensions, and  tested this research in the private banking sector represented by (7), especially in Baghdad city, Iraqi banks, and applied on sample consisting of 100 distributors in several administrative levels Director (Director, Director of the department, branch manager), and use questionnaire Head to collect data and information tool, and some private banks annual reports, has sought research to test a number of h

... Show More
View Publication Preview PDF
Crossref