Preferred Language
Articles
/
jcoeduw-826
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection
...Show More Authors

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that the
proposedmethod obtained very good results but it requires more testing on different types of Skin
Cancer Images.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 15 2019
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Combining Convolutional Neural Networks and Slantlet Transform For An Effective Image Retrieval Scheme
...Show More Authors

In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),

... Show More
Scopus (10)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jan 28 2015
Journal Name
Al-khwarizmi Engineering Journal
Thermal Field Analysis of Oblique Machining Process with Infrared Image for AA6063-T6
...Show More Authors

Abstract

 Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 07 2025
Journal Name
Journal Of Image And Graphics
Analysis Evolution of Image Caption Techniques: Combining Conventional and Modern Methods for Improvement
...Show More Authors

This study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology & Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Sat Mar 30 2024
Journal Name
Nasaq Journal
الفن والأنعكاس الذاتي في قصيدة جون آشبيري "صورة شخصية في مرآة محدبة"
...Show More Authors

جهن آشبيري ىه شاعر ما بعد الحداثة كتب قريدة " صهرة شخرية في مرآة محدبة " في عام .3791 يعد الفن والتأمل الذاتي عنررين ميمين في األدب ، كما تم تقديمو في قريدة آشبيري ، وتبين أن نيجو النقدي تجاه الفن والتأمل الذاتي كان مركز جذب من عقهل ما بعد الحداثة خالل عرره ، الذي انخرط في نقد عمل آشبيري بدبب طبيعتو المربكة أو كتابتو. إحدى سمات شعراء ما بعد الحداثة ىي انخراطيم في االنعكاسية الذاتية والتناص. من خالل ىذه العناصر ، ينقل

... Show More
View Publication
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Analytical Model for Detection the Tilt in Originally Oil Water Contacts
...Show More Authors

Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Hurst Exponent and Tsallis Entropy Markers for Epileptic Detection from Children
...Show More Authors

The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Brain Tumour Detection using Fine-Tuning Mechanism for Magnetic Resonance Imaging
...Show More Authors

In this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Computer Engineering And Intelligent Systems
Static Analysis Based Behavioral API for Malware Detection using Markov Chain
...Show More Authors

Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l

... Show More