Preferred Language
Articles
/
jcoeduw-649
Technology Usage in English Language Teaching and Learning: Reality and Dream
...Show More Authors

The aim of the study is to diagnose the real level of technology usage in teaching and learning EFL at university from teachers and students’ viewpoints, and see if it is possible to achieve something of the researchers’ dream - accessing top universities. Two questionnaires have been used to measure the range of technology usage in Colleges of Education for Women, Baghdad and Iraqi Universities, and College of Basic Education. The results have shown that the reality of using technology is still away from the dream. The results have been ascribed to two reasons: The first is the little knowledge of using technology in teaching, and the second is that technology is not included in the curriculum.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 18 2025
Journal Name
Pattern Recognition And Artificial Intelligence
Utilizing Energy-Efficient Deep Learning Technique for Age Estimation Through a Hybrid Methodology
...Show More Authors

This study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Fri Nov 21 2025
Journal Name
Journal Of Advances In Information Technology
Towards Accurate SDG Research Categorization: A Hybrid Deep Learning Approach Using Scopus Metadata
...Show More Authors

The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Analyzing impact of competitive dimensions on the efficiency of e-learning: دراسه استطلاعيه
...Show More Authors

The aim of this research is to diagnose the impact of competitive dimensions represented by quality, cost, time, flexibility on the efficiency of e-learning, The research adopted the descriptive analytical method by identifying the impact of these dimensions on the efficiency of e-learning, as well as the use of the statistical method for the purpose of eliciting results. The research concluded that there is an impact of the competitive dimensions on the efficiency of e-learning, as it has been proven that the special models for each of the research hypotheses are statistically significant and at a level of significance of 5%, and that each of these dimensions has a positive impact on the dependent variable, and the research recommended

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.

  &nbsp

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref