Preferred Language
Articles
/
jcoeduw-557
Image Watermarking based on Huffman Coding and Laplace Sharpening
...Show More Authors

In this paper, an algorithm through which we can embed more data than the
regular methods under spatial domain is introduced. We compressed the secret data
using Huffman coding and then this compressed data is embedded using laplacian
sharpening method.
We used Laplace filters to determine the effective hiding places, then based on
threshold value we found the places with the highest values acquired from these filters
for embedding the watermark. In this work our aim is increasing the capacity of
information which is to be embedded by using Huffman code and at the same time
increasing the security of the algorithm by hiding data in the places that have highest
values of edges and less noticeable.
The performance of the proposed algorithm is evaluated using detection
techniques such as Peak Signal- to- Noise Ratio (PSNR) to measure the distortion,
Similarity Correlation between the cover-image and watermarked image, and Bit
Error Rate (BER) is used to measure the robustness. The sensitivity against attacks on
the watermarked image is investigated. The types of attacks applied are: Laplacian
sharpening, Median filtering, Salt & Peppers Noise and Rotating attack. The results
show that the proposed algorithm can resist Laplacain sharpening with any sharpening
parameter k, besides laplacian good result according to some other types of attacks is
achieved.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Medical Image Segmentation using Modified Interactive Thresholding Technique
...Show More Authors

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Self-Localization of Guide Robots Through Image Classification
...Show More Authors

The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots.  To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-nahrain Journal Of Science
Image Classification Using Bag of Visual Words (BoVW)
...Show More Authors

In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.

View Publication Preview PDF
Crossref (23)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Bio-inspired Computing – Theories And Applications
Image Segmentation Using Membrane Computing: A Literature Survey
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Physics: Conference Series
Hiding text in gray image using mapping technique
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Proceedings Of International Conference On Data Science And Applications
Very Low Illumination Image Enhancement via Lightness Mapping
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-nahrain Journal Of Science
Medical Image Denoising Via Matrix Norm Minimization Problems
...Show More Authors

This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Smoothing of Image using adaptive Lowpass Spatial Filtering
...Show More Authors

Lowpass spatial filters are adopted to match the noise statistics of the degradation seeking
good quality smoothed images. This study imply different size and shape of smoothing
windows. The study shows that using a window square frame shape gives good quality
smoothing and at the same time preserving a certain level of high frequency components in
comparsion with standard smoothing filters.

View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Improving Fractal Image Compression Scheme through Quantization Operation
...Show More Authors

We explore the transform coefficients of fractal and exploit new method to improve the compression capabilities of these schemes. In most of the standard encoder/ decoder systems the quantization/ de-quantization managed as a separate step, here we introduce new way (method) to work (managed) simultaneously. Additional compression is achieved by this method with high image quality as you will see later.

View Publication Preview PDF
Crossref