Sesame crop, one of the very important oily, industrial, and summer crops that is economically important, has been investigated. The plantation and production of this crop has been studied in Al-Qadisiyah governorate during 2003-218. This is because this governorate is well-known by sesame plantation. Such a study helps to know the geographical distribution of sesame agricultural season in 2017-2018, and explore the most important natural factors that affect its plantation. Different research approaches have been adopted based on that facts that need to be met. A field study approach has been used in studying sesame crop descriptively and conceptually, shedding light on its nutritional and economic importance. Moreover, a descriptive comparative approach has been adopted when studying the geographical factors to know about the factors that affect its plantation and production in the area in question. Results have shown that climatic conditions of the area is suitable for its plantation and production. However, the soils of Al-Qadisiyah are of various categories. The best category is the riverbank soil, then comes river basin soil, and the depression soil of poor drainage. The latter has been invested after reclaiming it through planting the rice crop. Another type of soil is the sand dune soil which is unsuitable for agricultural production. Another type is the gypsum desert soil, which is agriculturally poor. Results have further revealed that rivers are considered the main surface water resource in the irrigation process as represented by the Euphrates Riverand its branches within the governorate. This is due to the lack of rain and its fluctuation.
Among a collection of leafhoppers from Erbil Province in Kurdistan/Iraq, a new species of the genus Arboridia Zakhvatkin, 1946 was designated and described here as a new species to the science. The erection of this species was mainly built on the external characters included the male genitalia. Sites and dates of collections so as the host-plants were verified.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreIncorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A
... Show MoreRate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.