The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Ghrelin and leptin are hunger hormones related to type 2 diabetes mellitus (T2DM), and the pathogenesis of T2DM is the abnormality in insulin secretion and insulin resistance (IR). The aim of this study is to evaluate ghrelin and leptin concentrations in blood and to specify the relationship of these hormones as dependent variables with some biochemical and clinical measurements in T2DM patients. In this study, forty one T2DM and forty three non-diabetes mellitus (non-DM) subjects, aged between 40-60 years and with normal weight, were enrolled. Fasting serum ghrelin and leptin were estimated by enzyme-linked immunosorbent assay (ELISA). In our results ghrelin was significantly increased, and leptin was significantly decreased, in T2DM pa
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreDengke Naniura is a traditional food from Sumatera Utara, Indonesia, that is produced through fermenting process, and this food is believed to contain high probiotics. The objective of the current research is to determine the potential of LAB as a probiotic that has been obtained from Dengke Naniura. Dengke Naniura was traditionally prepared from Cyprinus carpio. Four LABs have been successfully isolated from Dengke Naniura, such as D7DA3, D7B3, D7DBF and D7DN3. Those four LAB isolates were identified as Lactobacillus sp. This result has been confirmed by the non-spore forming bacterium, non-motile, and Gram-positive. Also, it has been supported by biochemical test, for the example Voges Proskauer, catalase test, Methyl
... Show MoreThe optical absorption data of Hydrogenated Amorphous Silicon was analyzed using a Dunstan model of optical absorption in amorphous semiconductors. This model introduces disorder into the band-band absorption through a linear exponential distribution of local energy gaps, and it accounts for both the Urbach and Tauc regions of the optical absorption edge.Compared to other models of similar bases, such as the O’Leary and Guerra models, it is simpler to understand mathematically and has a physical meaning. The optical absorption data of Jackson et al and Maurer et al were successfully interpreted using Dunstan’s model. Useful physical parameters are extracted especially the band to the band energy gap , which is the energy gap in the a
... Show MoreThis research estimates the effect of independent factors like filler (3%, 6%, 9%, 11% weight fraction), normal load (5N, 10N, 15N), and time sliding (5,7 , 9 minutes) on wear behavior of unsaturated polyester resin reinforced with jute fiber and waste eggshell and, rice husk powder composites by utilizing a statistical approach. The specimens polymeric composite prepared from resin unsaturated polyester filled with (4% weight fraction) jute fiber, and (3%, 6%, 9%, 11% weight fraction) eggshell, and rice husk by utilizing (hand lay-up) molding. Dry sliding wear experiments were carried utilizing a standard (pin on disc test setup) following a well designed empirical schedule that depends on Taguchi’s experimental design L9 (MINIT
... Show MoreOily wastewater is one of the most challenging streams to deal with especially if the oil exists in emulsified form. In this study, electrospinning method was used to prepare nanofiberous polyvinylidene fluoride (PVDF) membranes and study their performance in oil removal. Graphene particles were embedded in the electrospun PVDF membrane to enhance the efficiency of the membranes. The prepared membranes were characterized using a scanning electron microscopy (SEM) to verify the graphene stabilization on the surface of the membrane homogeneously; while FTIR was used to detect the functional groups on the membrane surface. The membrane wettability was assessed by measuring the contact angle. The PVDF and PVDF / Graphene membranes efficiency
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show More