The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Research Summary The aim of the search for knowledge of the effect generative learning strategy in: 1 - Achievement of the second grade. 2 - Systemic thinking for the second grade students when studying the biology. The study sample increased (60) students distributed into two equal experimental and control groups. Prepare the test of 40 pieces of multiple choice type and prepare a test for systematic thinking according to three skills 1. Understand the relationships between the parts of the systemic form and complement the sentences given 2 - complement the relationships between parts of the systemic form 3. Building the systemic form. It was a search result 1- There is a difference of statistical significance (at level 0.05) between th
... Show MoreThe evolution of thought, planning for Urban Communities in the second half of the twentieth century, through several successive stages. He was thought of planning urban communities depends on identifying the general plan for land uses of the project area as a basis for drawing charts the physical, social, economic, and put the general plan for land uses based on the terms of reference set by the number of experts in the ministries and agencies. I have lived cities in the Arab-Muslim region, during the transition period the natural and historic environment, urban, sophisticated balanced ways mentioned in the cultural, social, inspired by the teachings of Islam and the customs and traditions of the Arab social, put forth a set of
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreA demonstration of the inverse kinematics is a very complex problem for redundant robot manipulator. This paper presents the solution of inverse kinematics for one of redundant robots manipulator (three link robot) by combing of two intelligent algorithms GA (Genetic Algorithm) and NN (Neural Network). The inputs are position and orientation of three link robot. These inputs are entering to Back Propagation Neural Network (BPNN). The weights of BPNN are optimized using continuous GA. The (Mean Square Error) MSE is also computed between the estimated and desired outputs of joint angles. In this paper, the fitness function in GA is proposed. The sinwave and circular for three link robot end effecter and desired trajectories are simulated b
... Show MoreThis paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1) is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to
... Show Moreالخلاصة
يتضمن البحث تعيين عنصر الزئبق السام بتراكيزنزرة عالية الدقة (نانوغرام) باستخدام منظومة يخار الزئبق البارد لنماذج غذائية (لحوم حمراء ، لحوم بيضاء ) مختلفة ونماذج مائية (ماء النهر، مياه صناعية ، ماء الشرب) وربط المنظومة بتقنية الامتصاص الذري اللهبي.
ان عنصر الزئبق من اشد العناصر سمية وان التراكيز المسموح بها عالميا لايتعدى جزء واحد
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method