Cohesion is well known as the study of the relationships, whether grammatical and/or lexical, between the different elements of a particular text by the use of what are commonly called 'cohesive devices'. These devices bring connectivity and bind a text together. Besides, the nature and the amount of such cohesive devices usually affect the understanding of that text in the sense of making it easier to comprehend. The present study is intendedto examine the use of grammatical cohesive devicesin relation to narrative techniques. The story of Joseph from the Holy Quran has been selected to be examined by using Halliday and Hasan's Model of Cohesion (1976, 1989). The aim of the study is to comparatively examine to what extent the types of grammatical cohesive devices and their frequencies and densities are affected by thetechniques of narration, namely, internal and external or as commonly known as conversational and narrative. The researcher has come into the conclusion that the grammatical cohesive devices form one third of the story and accordingly, they affect the structure and interpretation of the text. Moreover, thegrammatical cohesive devices are more frequent in the conversational part when compared to the narrative part. It is also concluded that the endophoric reference is the dominant category in the conversational and narrative parts of the story, unlike the exophoric that can be identified only in relation to the background knowledge of the outside situation.
A thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreWater stress has a negative impact on the yield and growth of crops worldwide and consequently has a global impact on food security. Many biochemical changes occur in plants as a response to water stress, such as activation of antioxidant systems. Molybdenum (Mo) plays an important part in activating the expression of many enzymes, such as CAT, POD, and SOD, as well as increasing the proline content. Mo therefore supports the defence system in plants and plays an important role in the defence system of mung bean plants growing under water stress conditions. Four concentrations of Mo (0, 15, 30, and 45 mg·L−1) were applied to plants, using two approaches: (a) seed soaking and (b) foliar application. Mung bean plants were subject
... Show More