Background: (ABO) Blood type have an effect on general health including oral health as salivary physicochemical characteristics differ among different type of blood and as consequence these affect the severity of dental caries. The aim of the present study is an assessment of the prevalence of caries experience among different blood type in relation to salivary physicochemical characteristic. Materials and Methods: Two hundred and fifty females' college students in Al-Qadisyia University aged 18 years old were selected on random basis; they were divided to four groups according to their blood type, Dental experience was diagnosed and recorded according to DMFs (Mülemman, 1976) Index, this allows recording decayed lesion by severity. A sub sample was pooled for salivary analysis. Results: In the present study the blood type O was more common followed by B and A, whereas the less common was AB type, caries experiences (DMFs) and Ds component were found to be statistically significant among different blood types. The most sever grade of dental caries D3 and D4 were higher among type AB and lowest sever grade D1 among B blood type. While salivary flow rate significantly differ among differ blood type, viscosity higher but not significant among type AB. While salivary concentration of calcium and total protein were differ but not significant, opposite to alkaline phosphatase which was highly significant among different blood types. Conclusions: ABO blood type has an effect on salivary physical and chemical characteristic of saliva as effect on prevalence of caries.
The essay discusses how different environmental factors affect plant growth by explaining how each factor affects the physiological processes within the plant. The essay begins by explaining the effect of temperature on plant growth, as high or low temperatures can significantly affect the rate of photosynthesis and lead to a reduction in water and nutrient absorption. It also discusses the light intensity impacting plants because the more appropriate the light intensity is, the more enhanced the plant's photosynthesis ability, and in the excess or insufficient light condition, the growth can be inhibited. Additionally, the article outlines the effect of water shortage on the plant because this leads to the closure of stomata to avoid water
... Show MoreThe target of this study was to synthesize several new Ciprofloxacin drug analogs by providing a nucleophilic substitution procedure that provides new functionality at the carboxylic group location. The analogs were synthesized, designed, and characterized by 1HNMR, and FTIR. The synthetic path began from the reaction of ciprofloxacin drug with morpholine to give compound[B], ciprofloxacin derivative was linked with a variety of primary and secondary amines to give compounds[B1-B9]. The above-mentioned prepared compounds [B3 and B5] were applied to liver enzymes, and the increase in the activity of these enzymes was observed. In addition, a theoretical study was conducted to study the energies and properties of the prepared co
... Show MoreBackground: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show More