Background: Studying and investigating the transverse strength(Ts), impact strength(Is), hardness (Hr) and surface roughness(Ra) of conventional and modified autopolymerizing acrylic resin with different weight percentages of biopolymer kraftlignin, after curing in different water temperatures; 40°C and 80°C. Material and Methods: Standard acrylic specimens were fabricated according to ADA specification No.12 for transverse strength, ISO 179 was used for impact testing, Shore D for hardness and profilometerfor surface roughness. The material lignin first dispersed in the monomer, then the powder PMMA is immediately added. Ligninadded in different weight percentages. Then cured using pressure pot (Ivomet) in two temperatures;40°C and 80°C under 2 bar pressure, for 30 minutes.Atotal of 144samples were prepared for this study. Ts, Is, Ra, and Hr were tested, by using Instron universal testing machine, charpy impact tester, shore D tester, and profilometer respectively. Results: The transverse strength increased in both the conventional and modified onewhen compared with that cured in air. The addition of 0.5wt% lignin gave the higher effect (78.0017MPa) with highly significant difference found between groups at 40°C polymerizing temperature. While the impact strength in both temperatures in the modified resin revealed increased results than conventional one, 1.25wt% of kraft lignin gave the highest value (12.7355KJ/m2) with highly significant differences found between groups at 80°C polymerizing temperature. Hardness and surface roughness showed also highly significant differences found between groups at 40°C polymerizing temperature, all the groups had increased Hr. than the control one (78.95), while the Ra. decreased for 1.0% ,1.25,1.50 and 1.75 wt% lignin content to (0.26,0.10,0.063, 0.12µm) respectively in 40°C polymerizing temperature, the lowest value present in 1.75 wt% lignin (0.05 µm) at 80°Cpolymerizing temperature. Conclusions: It seems that increasing the polymerizing temperature to 40°C had a positive effect on the mechanical properties of autopolymerizing acrylic resin and the one enforced by kraft lignin biopolymer in low percentages. Increasing the polymerizing temperature to 80°C will doesn’t have much positive effect but it doesn’t deteriorate the mechanical properties. However, when submitted to increasing the temperature to 80°C, specimens showed a significant increase in impact strength.
Objectives Bromelain is a potent proteolytic enzyme that has a unique functionality makes it valuable for various therapeutic purposes. This study aimed to develop three novel formulations based on bromelain to be used as chemomechanical caries removal agents. Methods The novel agents were prepared using different concentrations of bromelain (10–40 wt. %), with and without 0.1–0.3 wt. % chloramine T or 0.5–1.5 wt. % chlorhexidine (CHX). Based on the enzymatic activity test, three formulations were selected; 30 % bromelain (F1), 30 % bromelain-0.1 % chloramine (F2) and 30 % bromelain-1.5 % CHX (F3). The assessments included molecular docking, Fourier-transform infrared spectroscopy (FTIR), viscosity and pH measurements. The efficiency
... Show MoreObjectives: Bromelain is a potent proteolytic enzyme that has a unique functionality makes it valuable for various therapeutic purposes. This study aimed to develop three novel formulations based on bromelain to be used as chemomechanical caries removal agents. Methods: The novel agents were prepared using different concentrations of bromelain (10–40 wt. %), with and without 0.1–0.3 wt. % chloramine T or 0.5–1.5 wt. % chlorhexidine (CHX). Based on the enzymatic activity test, three formulations were selected; 30 % bromelain (F1), 30 % bromelain-0.1 % chloramine (F2) and 30 % bromelain-1.5 % CHX (F3). The assessments included molecular docking, Fourier-transform infrared spectroscopy (FTIR), viscosity and pH measurements. The efficie
... Show MoreThe aim of the present study is to formulate floating effervescent microsponge tablet of the narrow absorption window drug, Baclofen (BFN) for controlling drug release and thereby decrease the side effect of the drug. The microsponges of BFN were prepared by non-aqueous emulsion solvent diffusion method (oil in oil emulsion method). The effects of drug: polymer ratio, stirring time and type of Eudragit polymer on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selected microsponge formula was incorporated into the floating effervescent gastro-retentive tablet. The prepared fl
... Show MoreBackground Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and w
... Show MoreThe effect of D phase polyamide (PA6)on the rheological properties, Young Modulus and the thermal expansion coefficient of two blends groups (bitumen-polyamide) were tested. The first group was for bitumen-PA6 blends and the second group for bitumen blended with polymer resulted from the crystallization of PA6-formic acid solution in water(PAFW).The obtained results proved that adding both types of polyamide has led to a rise in toughness and softening point temperature while the penetration Index approached -3 after adding the polyamide. So, all these changes make bitumen-polyamide blends more suitable for use in hot climate regions. The blends properties were explained according to the reaction that takes place between the polyamide and
... Show MoreDensity Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
Steel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm
Background: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were prepared wit
... Show MoreBackground: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were
... Show More