Background: The main aim of the present study is to qualify and quantify voids formation of root canals obturated with GuttaCore (GC) and experimental Hydroxyapatite polyethylene (HA/PE) as new carrier-based root canal fillings by using micro computed tomography scan. Materials and methods: In the present study, eight straight single-rooted human permanent premolar teeth are selected and disinfected, then stored in distilled water. The teeth decoronated leaving a root length of 12mm each. The root canals instrumented by using crown down technique and the apical diameter of the root canal prepared to a size # 30/0.04 for achieving standardized measurements. A 5mL of 17% EDTA used to remove the smear layer followed by 5mL of 2.5% NaOCl and rinsing with normal saline. Then the shaped root canals were randomly subdivided into two groups of 4 teeth each according to the carrier-based obturation system use, GuttaCore or experimental HA/PE. Afterwards, the obturated roots stored at 37°C with 100% humidity for 72 hours to allow for complete setting of the sealer. Micro-CT was then scanned to quantify the voids within the root canal space. The data were statistically analyzed by one-way ANOVA and post hoc comparison tests (α=0.05). Results: The root canals obturated with both obturation systems, GuttaCore andexperimental HA/PE showed voids formation, particularly at the apical third of the root canal. GC obturation showed a lower percentage of voids volume (1.54%) than the experimental HA/PE obturation (2.3%). The void volume percentage in the GuttaCore system, however, was non-significantly different (P> 0.05) in comparison with the experimental PE/HA system. Conclusions: GuttaCore and experimental HA/PE obturators exhibited voids formation within the entire root canal space. The experimental HA/PE obturator is comparable to the GuttaCore obturator in terms of voids qualification
A new class of higher derivatives for harmonic univalent functions defined by a generalized fractional integral operator inside an open unit disk E is the aim of this paper.
Seeking pharmacist advice about minor ailments is a common practice among Iraqi patients because such advice is free and quick. Unfortunately, the assessment and management of minor ailments by Iraqi pharmacists were inappropriate. Therefore, this study aimed to develop a model for a mobile application that can assist community pharmacists in the diagnosis and management of minor ailments.
The scientific content of the application was based on the information in the symptoms in the pharmacy and British Nati
The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
This work aims to detect the associations of C-peptide and the homeostasis model assessment of beta-cells function (HOMA2-B%) with inflammatory biomarkers in pregnant-women in comparison with non-pregnant women. Sera of 28 normal pregnant women at late pregnancy versus 27 matched age non-pregnant women (control), were used to estimate C-peptide, triiodothyronine (T3), and thyroxin (T4) by Enzyme-linked-immunosorbent assay (ELISA), fasting blood sugar (FBS) by automatic analyzer Biolis 24i, hematology-tests by hematology analyzer and the calculation of HOMA2-B% and homeostasis model assessment of insulin sensitivity (HOMA2-S%) by using C-peptide values instead of insulin. The comparisons, correlations, regression analysis tests were perfo
... Show MoreKE Sharquie, JR Al-Rawi, AA Noaimi, MM Jabir, Iraqi Postgraduate Medical Journal, 2009
S Khalifa E, AR Jamal R, N Adil A, J Munqithe M…, 2009
In this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreAs one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More