Background: Complete removal of filling material from the root canal is an essential requirement for endodontic retreatment. The purpose of the present study is to evaluate and compare the dissolving capabilities of various solvents (Xylene, Eugenate Desobturator, Eucalyptol, EDTA and Distilled water (as a control)) on four different types of sealer (Endofill, Apexit Plus, AH Plus and EndoSequence bioceramic sealer). Materials and method: Eighty samples of each sealer were prepared according to the manufacturers' instructions and then divided into ten groups (of 8 samples) for immersion in the respective solvents for 2 and 5 min immersion periods. Each sealer specimen was weighed to obtain its initial mass. The specimens were immersed in the tested solvents for 2 and 5 min, followed by rinsing with double distilled water and blotted dry with an absorbent paper, then they were reweighed to determine its final mass. The mean of weight loss was determined for each material in each solvent during the specified immersion period, and the values were subjected to statistical analysis. Results: Clear differences were shown in the solubility profile of these root canal sealers in the tested solvents. The result of the present study shows that Xylene had the greatest capacity for dissolving Endofill, Apexit Plus and AH Plus. Eugenate Desobturator, Eucalyptol and EDTA showed a highly significant dissolving capability on these sealers with variations between these subgroups; EndoSequence BC sealer is insoluble in these tested solvents. Regarding the immersion time, higher values of solubility were obtained at 5 min than that at 2 min immersion time. Conclusion: The results showed that Xylene, Eugenate Desobturator, Eucalyptol and EDTA can be used for the removal of Endofill, Apexit Plus and AH Plus during endodontic retreatment with variations between these subgroups; D.W (control group) showed the least capacity for dissolving these sealers. EndoSequence BC sealer is insoluble in the tested solvents.
Colorectal cancer (CRC) is the most common gastrointestinal malignancy and one of the top ten common cancers worldwide with approximately 2 million cases. There are multiple risk factors that could lead to CRC emergence; of which are genetic polymorphisms. Excision repair cross-complementing group 2 (ERCC2) gene encodes for ERCC2 enzyme which plays a crucial role in maintaining genomic integrity by removing DNA adducts. Several studies suggested that there could be a link between genetic polymorphisms of ERCC2 gene and the risk of CRC development. Hence the present study aims to validate the relationship between the following ERCC2 single nucleotide polymorphisms (rs13181, rs149943175, rs530662943, and rs1799790) and CRC susceptibility. A t
... Show MoreProteinases (E.C.3.4.21) family are widely distributed in the nature; it was present in animals tissues , plants and microbial cell . Protease was purified from Zahdi seed (Phoenix dactylifera L.) by several steps included ammonium sulphite ppt (75%) saturation and dialyzed against the 80mM sodium phosphate buffer at pH 7.5 . The enzyme specific activity was 407.62 unit/mg protein. The obtained extract was purified by DEAE-Cellulose column followed by gel filtration through Sephacyl S-200 column .The enzyme specific activity ,yield and purification fold were 1873.49 unit/mg protein, 22.99 and 58.42% respectively. The results of protease characterization showed that the molecular weight was 25118 daltons as determined by gel f
... Show MoreIn this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
The development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal
... Show MoreAbstract: Recombinant human bone morphogenetic protein-2 (rhBMP-2) and platelet-rich fibrin (PRF) bioactive materials have been used to enhance healing and improve dental implant stability. This study aimed to compare the effect of rhBMP-2 and PRF bioactive materials on dental implant stability at different intervals and to evaluate the correlation of implant length and diameter with implant stability. Two bioactive materials were compared to evaluate their effect on dental implant stability. A total of 32 patients (102 dental implants) were divided into 3 groups: 24 dental implants with bone morphogenetic protein (BMP), 27 dental implants with PRF, and 51 dental implants without BMP or PRF (control group). Data were statistically analyzed
... Show MoreBackground: The use of osseointegrated fixtures in dentistry has been demonstrated both histologically and clinically to be beneficial in providing long term oral rehabilitation in completely edentulous individual. Most patients suffer from denture instability; particularly with mandibular prosthesis, the use of dental implant will be benefit significantly from even a slight increase in retention. The concept of implanting two to four fixtures in a bony ridge to retain a complete denture prosthesis appealing therefore, as retention, stability and acceptable economic compromise to the expanse incurred with the multiple fixture supported fixed prosthesis. Materials and methods in this study the sample were eight patients selected from a hosp
... Show MoreThis search include the synthesis of some new 1,3-oxazepine derivatives have been prepared, starting from reaction of L-ascorbic acid with dry acetone in presence of dry hydrogen chloride afforded the acetal (I). Treatment of the latter with p-nitrobenzoyl chloride in pyridine yielded the ester (II) which was dissolved in (65%) acetic acid in absolute ethanol yielded the glycol (III). The reaction of the glycol (III) with sodium periodate in distilled water at room temperature produced the aldehyde (IV). The compound (V) [4-(1,3-dioxoisoindolin-2-yl)benzoic acid] was synthesized by reaction p-aminobenzoic acid and phthalic anhydride in presence of (gla. CH3COOH). Reaction of compound (V) with thionyl chloride produced [4-(1,3-dioxoisoindoli
... Show MoreIn this study, oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as an oxidant was studied, whereas the catalyst used was zirconium oxide supported on Activated carbon (AC). Zirconium oxide (ZrO2) was impregnated over prepared activated carbon (AC) and characterized by various techniques such as XRD, FTIR, BET, SEM, and EDX. This composite was used as a heterogeneous catalyst for oxidation desulfurization of simulated oil. The results of this study showed that ZrO2/AC composite exhibited significant catalytic activity and stability, effectively lowering sulfur content under mild conditions. Factors such as reaction temperature (30, 40, 50, 60°C), time (5, 10, 15,20,30,60, 80 100 min), catalyst dose (0.3, 0.5,
... Show More