Background: Complete removal of filling material from the root canal is an essential requirement for endodontic retreatment. The purpose of the present study is to evaluate and compare the dissolving capabilities of various solvents (Xylene, Eugenate Desobturator, Eucalyptol, EDTA and Distilled water (as a control)) on four different types of sealer (Endofill, Apexit Plus, AH Plus and EndoSequence bioceramic sealer). Materials and method: Eighty samples of each sealer were prepared according to the manufacturers' instructions and then divided into ten groups (of 8 samples) for immersion in the respective solvents for 2 and 5 min immersion periods. Each sealer specimen was weighed to obtain its initial mass. The specimens were immersed in the tested solvents for 2 and 5 min, followed by rinsing with double distilled water and blotted dry with an absorbent paper, then they were reweighed to determine its final mass. The mean of weight loss was determined for each material in each solvent during the specified immersion period, and the values were subjected to statistical analysis. Results: Clear differences were shown in the solubility profile of these root canal sealers in the tested solvents. The result of the present study shows that Xylene had the greatest capacity for dissolving Endofill, Apexit Plus and AH Plus. Eugenate Desobturator, Eucalyptol and EDTA showed a highly significant dissolving capability on these sealers with variations between these subgroups; EndoSequence BC sealer is insoluble in these tested solvents. Regarding the immersion time, higher values of solubility were obtained at 5 min than that at 2 min immersion time. Conclusion: The results showed that Xylene, Eugenate Desobturator, Eucalyptol and EDTA can be used for the removal of Endofill, Apexit Plus and AH Plus during endodontic retreatment with variations between these subgroups; D.W (control group) showed the least capacity for dissolving these sealers. EndoSequence BC sealer is insoluble in the tested solvents.
Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
In this paper, a discussion of the principles of stereoscopy is presented, and the phases
of 3D image production of which is based on the Waterfall model. Also, the results are based
on one of the 3D technology which is Anaglyph and it's known to be of two colors (red and
cyan).
A 3D anaglyph image and visualization technologies will appear as a threedimensional
by using a classes (red/cyan) as considered part of other technologies used and
implemented for production of 3D videos (movies). And by using model to produce a
software to process anaglyph video, comes very important; for that, our proposed work is
implemented an anaglyph in Waterfall model to produced a 3D image which extracted from a
video.
Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show MoreComputer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
One study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone
... Show More