Background: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.max CAD. B1: prepared with butt-joint incisal reduction restored with IPS e.max press. B2: prepared with overlapped incisal reduction and restored with IPS e.max press. The marginal gap was measured with direct view technique using digital microscope at a magnification of 230x. Measurements were recorded for four surfaces for each sample and the maximum value was taken to represent that sample. Results: The data were analyzed with two-way ANOVA and independent samples t-tests. These tests revealed highly significant effects of both the preparation design and the technique of fabrication on the marginal gap (p=0.00), with CAD/CAM veneers, group A1 recorded the least marginal gap and pressing group, B2 showed the highest gap values. There was no significant effect of the interaction between the two parameters on the marginal gap. Conclusion: the CAD/CAM veneers with butt joint incisal reduction produced the most accurate margins while the least favorable combination was the pressable ceramic veneers with overlapped incisal reduction.
This research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MoreNew 1,2,4-triazole derivatives of 2-mercaptobenzimidazole (MB) are reported. Ethyl (benzimidazole-2-yl thio) acetate (1) has been prepared by condensing 2-mercaptobenzimidazole with ethylchloroacetate. The ester (1) on reacting with hydrazine hydrate gave the corresponding acetohydrazide(2)which was reacted separately with phenylisocyanate and phenylisothiocyanate, followed by ring closure in an alkaline medium giving 3-[(benzimidazole-2-yl thio) methyl]-4-phenyl-1,2,4-triazole-5-ol and 3-[(benzimidazole-2-yl thio) methyl]-4-phenyl-1,2,4-triazole-5-thiol respectively (6,7). Reaction of acetohydrazide (2) with CS2 and ethanol/KOH, gave dithiocarbazate salt (8). Cyclization of (8) with hydrazine hydrate gave 3-[(benzimi
... Show MoreTo verify the influence of magnetic flux on the characteristics of SAE 10W-30 gasoline engine oil when the engine oil is exposed to different magnetic fluxes 0, 6, 9, and 13 Volt. The following oil characteristics were measured: viscosity at 40 and 100 °C, and total acid number (TAN) mg KOH/g. The research was carried out in a completely randomized design with three replications for each treatment under the 5% probability level to compare the means of the treatments. The results of the experiment showed that there were significant differences in the studied properties when the engine oil was exposed to the above magnetic fluxes and, inversely, especially the magnetic flux of 13 Volt,
This paper aims to study the damage generated due to creep-fatigue interaction behaviors in solid polyamide 6,6 and its composites that include 1%wt of carbon nanotubes or 30% wt short carbon fiber prepared by an injection technique. The investigation also includes studying the influence of applied temperatures higher than the glass transition temperatures on mechanical properties. The obtained results showed that the addition of reinforcement materials increased all the mechanical properties, while the increase in test temperature reduced all mechanical properties, especially for polyamide 6,6. The creep-fatigue interaction resistance also improved due to the addition of reinforcement materials by inc
... Show MoreThe efficiency of internal combustion engines (ICE) is usually about thirty percent of the total energy of the fuel. The residual energy is lost in the exhaust gas, the lubrication, and the cooling water in the radiators. Recently much of the researcher’s efforts have focused on taking advantage of wasted energy of the exhaust gas. Using a thermoelectric generator (TEG) is one of the promising ways. However, TEG depends entirely on the temperature difference, which may be offered by the exhaust muffler. An experimental test has been conducted to study the thermal performance of a different muffler internal design. The researchers resort to the use of lost energy in an ICE using TEG, which is one of the ways to take adv
... Show MoreThis study investigates the digestion of cow dung (CD) for biogas production at laboratory scales. The study was carried out through anaerobic fermentation using cow dung as substrate. The digester was operated at ambient temperatures of 39.5 °C for a period of 10 days. The effect of iron powder in controlling the production of hydrogen sulfide (H2S) has been tested. The optimum concentration of iron powder was 4g/L with the highest biogas production. A Q – swatch Nd:YAG laser has been used to mix and homogenize the components of one of the six digesters and accelerate digestion. At the end of digestion, all digestions effluent was subjected to 5 laser pulses with 250mJ/pules to dispose waste biomass.
The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.