Background: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing technique and divided into 2 groups: 30 specimens for control group 0% nanofillers and 30 specimens for experimental group 2% of (1:1) ZrO2 and TiO2nano fillers then each group was subdivided into3 sub-groups according to the test to be conducted with 10 specimens for impact, transverse and thermal conductivity test. Results: The interaction of TMSPM silane and the nanofillers was confirmed by FT-IR (Fourier Transform Infra-red spectrophotometer). High significant increase in impact strength (9.838) Kj/m2 and transverse strength (101.705) N/mm2 and non-significant increase in thermal conductivity (0.286) W/m.C° of heat cured acrylic resin of the new polymer nanocomposite were observed. Conclusions: The addition of 2 wt.% of ZrO2:TiO2 by means of 1:1 ratio considerably improved the impact and transverse strength and had a positive effect on the thermal conductivity.
Hydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined.
There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements.
The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more a
Rutting is a predominant distress in asphalt pavements, particularly in hot climatic regions. This study systematically investigated the high-temperature performance of hot mix asphalt modified with five nanomaterials, namely, nano-silica (NS), nano-alumina (NA), nano-titanium (NT), nano-zinc (NZ), and carbon nanotubes (CNTs), under consistent laboratory conditions. Modification dosages were selected up to 10% for NS, NA, and NT, and up to 5% for NZ and CNTs. The experimental methodology comprised the following: (i) binder rheological characterization through rotational viscosity, G*/sinδ, and multiple stress creep recovery (MSCR) to quantify rutting susceptibility; (ii) chemical and microstructural assessments using Fourier transf
... Show MoreThis research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59% have been achieved for reinforced RPC contains 910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w
... Show MoreThis thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).
Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.
The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was
... Show MoreThe research included the introduction to the research and its importance as knee joint is an important joint in the human body that is prone to injury. One such injury is knee roughness injury that occurs as a result of the stress of the knee joint and age. The importance of examining the need for the use of rehabilitation exercises, especially in the watercourse system, is highlighted by the fact that the aquatic environment is one of the most important factors helping to alleviate pain and rehabilitate the knee joint and thereby improve the mobility of those with knee roughness. The problem of research is that rehabilitation exercises have been developed in the watercourse system on the basis of scientific bases with a repetitive and sys
... Show MoreExploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
The research problem can be summarized through focusing on the environment that surrounds students and class congestion, how these factors affect directly or indirectly the academic achievement of students, how these factors affect understanding the scientific material that the student receives in this physical environment, how classroom’s components such as seats, space With which the student can move, the number of students in the same class, the lighting, whether natural or artificial, and is this lighting sufficient or not enough, the nature of the wall paint old or modern, is it comfortable for sight, the blackboard if it is Good or exhausted, In addition to air-conditioning sets in summer and winter, this is on the on
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show More