Background: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight samples were prepared for pilot study divided into four groups according to the concentrations of singled walled carbon nanotubes ( 0%, 0.5%, 1% & 1.5%) added to heat cure acrylic resin , each group was divided into four subgroups according to the tests conducted (Surface hardness , surface roughness, impact strength and transverse strength) and the results obtained were evaluated to determine the concentration of singled walled carbon nanotubes (SWCNTS) that improve the mechanical properties of heat cure acrylic resin to be used to complete our study, so another 80 samples were made divided into two main groups (0% SWCNTS as control group) and (1.5% SWCNTS test group) and all the tests were done again. Results: Impact strength and transverse strength were significantly increased after adding 1.5% SWCNTS While surface hardness was significantly decreased and surface roughness was non-significantly affected when compared with control group. Conclusions: Impact strength and transverse strength of hot cure acrylic resin reinforced with 1.5% SWCNTS were greatly increased.
Global warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MoreBackground: Facial disfigurement can be the result of a congenital anomaly, trauma or tumor surgery, in many cases the prosthetic rehabilitation is indicated. Maxillofacial prosthetic materials should have desirable and ideal physical, aesthetic, and biological properties and those properties should be kept for long period of time in order to reach patient acceptance. Silicone elastomer are the most commonly used material for facial restoration because of its favorable properties mechanically and physically as the biocompatibility and good elasticity. Aim of this study: This study aimed to evaluate the effect of addition of Aluminum oxide (Al2O3) Nano fillers in different concentrations on tear strength and hardness of VST 50F room tempe
... Show MoreThe effect of D phase polyamide (PA6)on the rheological properties, Young Modulus and the thermal expansion coefficient of two blends groups (bitumen-polyamide) were tested. The first group was for bitumen-PA6 blends and the second group for bitumen blended with polymer resulted from the crystallization of PA6-formic acid solution in water(PAFW).The obtained results proved that adding both types of polyamide has led to a rise in toughness and softening point temperature while the penetration Index approached -3 after adding the polyamide. So, all these changes make bitumen-polyamide blends more suitable for use in hot climate regions. The blends properties were explained according to the reaction that takes place between the polyamide and
... Show MoreIn this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreSeveral schottky diodes were fabricated from polyaniline/ Carbon nanotube (single and multiwalled) composites. These composites were synthesized with different concentration and two carbon nanotubes types, Single and Multi-Walled Carbon Nanotubes (SWCNT & MWCNT). Aluminum and silver paste were chosen as schottky and ohmic contact respectively. physical and electrical were used to studied these composite by using Atomic Force Microscopy (AFM) and electrical measurements. The Root Mean Square RMS surface roughness of the composite samples was found to be around 4nm. The currentvoltage characteristic were measurements for all samples in the bias range ±15V at room temperature. The results shows the increasing in carbon nanotubes concentration
... Show MoreBackground: The objectives of this study are to evaluate the effect of addition of Multi-Wall Carbon Nano Tubes (MWCNTs) of different concentrations (0.05 mg.mL-1,0.25 mg.mL-1,0.5 mg.mL-1and1 mg.mL-1) on dimethyl sulphoxide DMSO and distilled water (DW) on tooth enamel. It intends to evaluate enamel microhardness in (Kg. m-2) pre and post the application of Multi-Wall Carbon Nano Tubes (MWCNTs). Materials and Methods: Thirty specimens prepared for the present study to measure the hardness of the enamel. Results: The results showed that a significant increase in the enamel microhardness for groups 0.05 mg/mL (group B), 0.25 mg/mL (group C), 0.5 mg/mL (group D) and 1 mg/mL (group E) compared with control group (group A) in dimethyl sulphoxi
... Show MoreExperimental investigations had been done in this research to demonstrate the effect of carbon fiber and Ceramic fillers contents on the tribological behaviour of (15% volume fraction) carbon-epoxy composite system under varying volume fraction, load, time and sliding distance. The wear resistance were investigated according to ASTM G99-05standard using pin on disc machine to present the composite tribological behaviour. The influence of three ceramic fillers, granite, perlite and calcium carbonate (CaCO3), on the wear of the carbon fabric reinforced epoxy composites under dry sliding conditions has been investigated. The effect of variants in volume fraction, applied load, time and sliding distance on the wear behaviour of po
... Show More