Background: The PMMA polymer denture base materials are low mechanical properties, adaptation of the denture base to underlying tissue is important for retention and stability of denture. The aim of the study was toevaluate the effect of mixtureZrO2-Al2O3 nanoparticles on impact strength, transverse strength, hardness, roughness, denture base adaptation of heat cured acrylic resin denture base material. Materials and methods: One hundred (100) specimens were prepared, the specimens were divided into five groups (20 specimens to each) according to the test type, each group was subdivided in to two subgroups (control and experimental) each subgroup consist of 10 specimens, the experimental group included mixture of 2% (ZrO2-Al2O3ratio2:1) by weight. Theimpact strength was measured by Charpy's impact testing machine, the transverse strength was measured by Instron testing machine while the hardness was measured byshore D durometer and roughness was measured by Profilometer. Denture base adaptation was measured by digital microscope and evaluated by computerized tomography (CT). Results: Highly significant increaseofimpact and transverse strength, non-significant increase ofhardness, significant increase ofroughness andreduction of denture base adaptation (measured at 3 point A, B and C) occurred in experimental groupwhen compared to control group. CT evaluation, gap between the denture base and master cast (control and experimental groups) increased from the anterior to posterior side of palate and from the alveolar ridge to the mid palatal line. Conclusion: The polymer nanocomposites had mechanical properties higher than neat PMMA at same time less denture base adaptation.
Carbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
The materials of soil were affected by multi reasons; such as human activities, floods, tidal waves, ... etc. The change of the soil contents could be measured through different indexes; such as electric conductivities, salinity, concentration of the heavy elements, and concentration of essential elements ... etc. The land cover is affected by natural influences, like tidal energy, which plays a negative role in the salinization of land adjacent to the coasts, causing a problem for soils in all its details represented in changing of the dissolved elements in soil. One of the most important natural factors that cause soil salinity is human activity in all its forms, and one of the most important causes of salinity is the phenomenon o
... Show MoreIraqi bentonite is used as main material for preparing ceramic samples with the additions of alumina and magnesia. X-ray diffractions analyses were carried out for the raw material at room temperature. The sequence of mineral phase's transformations of the bentonite for temperatures 1000 ,1100 ,1200 and 1250 ºC reflects that it finally transformed in to mullite 39.18% and cristobalite 62.82%. Samples of different weight constituent were prepared. The effect of its constitutional change reveals through its heat treatments at 1000,1100,1200,1250and 1300ºC .The samples of additions less than 15% of alumina and magnesia could not stand up to 1300ºC while the samples of addition more than 15% are stable .That is shown by analy
... Show MoreThis work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mi
... Show MoreAbstract
The experiment has been carried out in the Syrian National Commission of Biotechnology, during the growing season 2018/2019, to study the effect of abiotic stresses (salinity and osmotic stresses) on the activity of some antioxidant enzymes and biochemical traits in Catharanthus roseus. The experiment has been laid according to (CRD) with three replications. The seeds have been sterilized by NaOCl solution (0.5% v/v), then planted on MS medium. Plantlets have been moved to MS medium enriched with NAA (1 mg.L-1) and BA (2 mg.L-1). The callus has been initiated from leaves using MS medium containing NAA (1 mg L-1) and KIN (2 mg.L-1). After 60 days, callus
... Show MoreAbstract: Objectives: To investigate the effect of temperature elevation on the bonding strength of resin cement to the zirconia ceramic using fractional CO2 laser. Background: Fractional CO2 laser is an effective surface treatment of zirconia ceramic, as it increases the bonding strength of zirconia to resin cement. Methods: Thirty sintered zirconia discs (10 mm diameter, 2 mm thickness) were prepared and divided to three groups (N=10) and five diffident pulse durations were used in each group (0.1, 0.5, 1, 5 and 10 ms). Group A was treated with 10 W power setting, group B with 20 W and group C with 30 W. During laser irradiation, temperature elevation measurement was recorded for each specimen. Luting cement was bonded to the treated z
... Show Moresynthesis and characterization of New Bidentate schiff base Ligand Type(NO)Donor Atoms Derived from isatin and 3-Amino benzoic acid and Its complexes with Co(||),Cu(||),Cd(||)and Hg(||)Ions
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
The effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decrea
... Show More