Background The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etched with 15N H2SO4 and 30% H2O2, Surfaces were characterized by scanning electron microscope (SEM), Xray diffraction (XRD), atomic force microscope (AFM), thickness measurement for the invitro experiments. While for invivo part tibia of 5 white new Zealand rabbits were chosen as implantation sites. The tibia of each rabbit received two screws. Biomechanical test was performed to understand the bone-implant interface, after two weeks healing periods. Implants from 4animals were tested for the torque required to remove the implant from the bone and the other one animal was prepared for histological examination. Results and Conclusion: For in vitro results, scanning electron microscope showed that the chemical etching of Ti substrate becomes highly porous and has surface consisting of nanosized pits. Removal torque means value after 2 weeks of implantation mentioned that, there was a gradual increase in the removal torque mean values as a follow (M±SD): 12.625(N.cm) ± 0.517, 30.500(N.cm) ± 4.071for machined surface(X), nano chemically etched (X1) respectively. In addition, the histological analysis showed improved quality of bone in response to the nano modified screws, that the chemically treated implants shows trabeculated thread.
has experienced a step-change since the inception of ambient mass spectrometry removed the requirement for samples to be investigated under vacuum conditions. Approaches based on surface– plasma interactions are especially promising, including PADI. Whilst the mechanisms involved in generating PADI spectra still need to be unravelled, PADI shows significant promise to become a valuable and versatile tool in the instrumental arsenal available to the surface analyst
Hydroxide upon the chemical composition and dry matter(DM) and organic matter(OM) digestibility . Rice straw was treated with 4% sodium hydroxide using 30% of DM basis moisture, and incubated at 40 ºC for 40 days., DM digestibility (DMD) was significantly affected (P<0.01) by the treatment , where DMD increased The objective of this experiment was to study the effect of physical form (long ,chopped and ground ) and washing rice straw treated with sodium from 42.32 to 45.41% , OM digestibility (OMD) and total digestible nutrient (TDN) increased(P<0.05) from 47.38 and 49.33 to 49.67 and 52.83% ,respectively. While hemicellulose content increased (P<0.05 ) from 261.71 to 268.17 gm/kg DM ,and metabolizable energy (ME) from 7.11 to 7.48 MJ/
... Show MoreIn this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MoreIn this work the production of activated carbon (AC) from Imperata is done by microwave assisted Potassium hydroxide (KOH) activation and using this activated carbon for the purpose of the uptake of amoxicillin (AMX) by adsorption process from aqueous solution. The effects for irradiation power (450-800W), irradiation time (6-12min) as well as impregnation ratio (0.5-1 g/g) on the AMX uptake and yield AMX uptake at an initial concentration of AMX (150 mg/g). The optimum conditions were 700 W irradiation power, 10 min time of irradiation, as well as 0.8 g/g impregnation ratio with 14.821% yield and 12.456 mg/g AMX uptake. Total volume of hole and the area of the surface (BET) are 0.3027 m³/g, and 552.7638 m²/g respectively. The properti
... Show MoreThis paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
Background: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning ele
... Show MoreTrickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter disch
... Show MoreThis paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ∆G, ∆H, and ∆S thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated